5,863 research outputs found

    Suspended Multifunctional Nanocellulose as Additive for Mortars

    Get PDF
    Cellulose derivatives have found significant applications in composite materials, mainly because of the increased mechanical performance they ensure. When added to cement-based materials, either in the form of nanocrystals, nanofibrils or micro/nanofibers, cellulose acts on the mixture with fresh and hardened properties, affecting rheology, shrinkage, hydration, and the resulting mechanical properties, microstructure, and durability. Commercial cotton wool was selected as starting material to produce multifunctional nanocelluloses to test as additives for mortars. Cotton wool was oxidized to oxidized nanocellulose (ONC), a charged nanocellulose capable of electrostatic interaction, merging cellulose and nanoparticles properties. Oxidized nanocellulose (ONC) was further functionalized by a radical-based mechanism with glycidyl methacrylate (GMA) and with a mixture of GMA and the crosslinking agent ethylene glycol dimethacrylate (EGDMA) affording ONC-GMA and ONC-GMA-EGDMA, both multifunctional-charged nanocellulose merging cellulose and bound acrylates properties. In this work, only ONC was found to be properly suitable for suspension and addition to a commercial mortar to assess the variation in mechanical properties and water-mortar interactions as a consequence of the modified microstructure obtained. The addition of oxidized nanocellulose caused an alteration of mortar porosity, with a decreased percentage of porosity and pore size distribution shifted towards smaller pores, with a consequent increase in compressive resistance, decrease in water absorption coefficient, and increased percentage of micropores present in the material, indicating a potential improvement in mortar durability

    The Cratering History of Asteroid (21) Lutetia

    Full text link
    The European Space Agency's Rosetta spacecraft passed by the main belt asteroid (21) Lutetia the 10th July 2010. With its ~100km size, Lutetia is one of the largest asteroids ever imaged by a spacecraft. During the flyby, the on-board OSIRIS imaging system acquired spectacular images of Lutetia's northern hemisphere revealing a complex surface scarred by numerous impact craters, reaching the maximum dimension of about 55km. In this paper, we assess the cratering history of the asteroid. For this purpose, we apply current models describing the formation and evolution of main belt asteroids, that provide the rate and velocity distributions of impactors. These models, coupled with appropriate crater scaling laws, allow us to interpret the observed crater size-frequency distribution (SFD) and constrain the cratering history. Thanks to this approach, we derive the crater retention age of several regions on Lutetia, namely the time lapsed since their formation or global surface reset. We also investigate the influence of various factors -like Lutetia's bulk structure and crater obliteration- on the observed crater SFDs and the estimated surface ages. From our analysis, it emerges that Lutetia underwent a complex collisional evolution, involving major local resurfacing events till recent times. The difference in crater density between the youngest and oldest recognized units implies a difference in age of more than a factor of 10. The youngest unit (Beatica) has an estimated age of tens to hundreds of Myr, while the oldest one (Achaia) formed during a period when the bombardment of asteroids was more intense than the current one, presumably around 3.6Gyr ago or older.Comment: Accepted by PSS, to appear on Lutetia Flyby special issu

    A sensitivity study of triboson production processes to dimension-6 EFT operators at the LHC

    Get PDF
    We present the first parton-level study of anomalous effects in triboson production in both fully and semi-leptonic channels in proton-proton collisions at 13TeV at the Large Hadron Collider (LHC). The sensitivity to anomalies induced by a minimal set of bosonic dimension-6 operators from the Warsaw basis is evaluated with specific analyses for each final state. A likelihood-based strategy is employed to assess the most sensitive kinematic observables per channel, where the contribution of Effective Field Theory operators is parameterized at either the linear or quadratic level. The impact of the mutual interference terms of pairs of operators on the sensitivity is also examined. This benchmark study explores the complementarity and overlap in sensitivity between different triboson measurements and paves the way for future analyses at the LHC experiments. The statistical combination of the considered final states allows setting stringent bounds on five bosonic Wilson coefficients

    The Cratering History of Asteroid (2867) Steins

    Full text link
    The cratering history of main belt asteroid (2867) Steins has been investigated using OSIRIS imagery acquired during the Rosetta flyby that took place on the 5th of September 2008. For this purpose, we applied current models describing the formation and evolution of main belt asteroids, that provide the rate and velocity distributions of impactors. These models coupled with appropriate crater scaling laws, allow the cratering history to be estimated. Hence, we derive Steins' cratering retention age, namely the time lapsed since its formation or global surface reset. We also investigate the influence of various factors -like bulk structure and crater erasing- on the estimated age, which spans from a few hundred Myrs to more than 1Gyr, depending on the adopted scaling law and asteroid physical parameters. Moreover, a marked lack of craters smaller than about 0.6km has been found and interpreted as a result of a peculiar evolution of Steins cratering record, possibly related either to the formation of the 2.1km wide impact crater near the south pole or to YORP reshaping.Comment: Accepted by Planetary and Space Scienc

    Extra-small gold nanospheres decorated with a thiol-functionalized biodegradable and biocompatible linear polyamidoamine as nanovectors of anticancer molecules

    Get PDF
    Gold nanoparticles are elective candidate for cancer therapy. Current efforts are devoted to developing innovative methods for their synthesis. Besides, understanding their interaction with cells have become increasingly important for their clinical application. This work aims to describe a simple approach for the synthesis of extra-small gold nanoparticles for breast cancer therapy. In brief, a biocompatible and biodegradable polyamidoamine (named AGMA1-SH), bearing 20%, on a molar basis, thiol-functionalized repeat units, is employed to stabilize and coat extra-small gold nanospheres of different sizes (2.5, 3.5, and 5 nm in gold core), and to generate a nanoplatform for the link with Trastuzumab monoclonal antibody for HER2-positive breast cancer targeting. Dynamic light scattering, transmission electron microscopy, ultraviolet visible spectroscopy, X-ray powder diffraction, circular dichroism, protein quantification assays are used for the characterization. The targeting properties of the nanosystems are explored to achieve enhanced and selective uptake of AGMA1-SH-gold nanoparticles by in vitro studies against HER-2 overexpressing cells, SKBR-3 and compared to HER-2 low expressing cells, MCF-7, and normal fibroblast cell line, NIH-3T3. In vitro physicochemical characterization demonstrates that gold nanoparticles modified with AGMA1-SH are more stable in aqueous solution than the unmodified ones. Additionally, the greater gold nanoparticles size (5-nm) is associated with a higher stability and conjugation efficiency with Trastuzumab, which retains its folding and anticancer activity after the conjugation. In particular, the larger Trastuzumab functionalized nanoparticles displays the highest efficacy (via the pro-apoptotic protein increase, anti-apoptotic components decrease, survival-proliferation pathways downregulation) and internalization (via the activation of the classical clathrin-mediated endocytosis) in HER-2 overexpressing SKBR-3 cells, without eliciting significant effects on the other cell lines. The use of biocompatible AGMA1-SH for producing covalently stabilized gold nanoparticles to achieve selective targeting, cytotoxicity and uptake is completely novel, offering an important advancement for developing new anticancer conjugated-gold nanoparticles

    A wait-and-watch approach to small pancreatic neuroendocrine tumors : Prognosis and survival

    Get PDF
    Background: Whether all the small (\u3c6 6420mm) non-functional pancreatic neuroendocrine neoplasms (pNENs) should be routinely resected is unclear. Aim: To assess the overall survival (OS) and progression-free survival (PFS) of patients with small pNENs, followed-up with different management options. Material and methods: Between 2007-2014, 51 patients were newly diagnosed with pNEN. 15 patients with pNENs \u3c6 6420 mm underwent an intensive follow-up at 3-month intervals during the first year and then every 6 months (FU pNEN group). They were all at TNM stage I, except for one patient at stage IIA. 21 patients underwent surgical resection (SR pNEN group): 2 patients were at TNM stage I, 9 IIA, one IIIB, 9 IV. 15 patients received systemic therapy (ST pNEN group) due to advanced disease or contraindications to surgery: 5 were at stage IIA, 2 IIB, 8 IV. Results: The median follow-up for the entire cohort was 50 months. Survival was similar in the FU and SR pNEN groups, but significantly worst in the ST pNEN patients (log-rank test P < 0.05). The 4-year survival rate was 100% in the FU pNEN group, 90.5% among the SR pNEN patients, 61% for the ST pNEN ones (p < 0.0001). The disease remained stable in all but one patient in the FU pNEN group, whereas six patients in the SR group and five in the ST group showed disease progression. Conclusions: The "wait-and-watch" approach to early-stage small pNENs appears to be safe although further studies are needed to confirm these results in larger cohorts of patients

    Assessment of the Risk of Nodal Involvement in Rectal Neuroendocrine Neoplasms: The NOVARA Score, a Multicentre Retrospective Study

    Get PDF
    open14noRectal neuroendocrine tumors (r‐NETs) are rare tumors with overall good prognosis after complete resection. However, there is no consensus on the extension of lymphadenectomy or regarding contraindications to extensive resection. In this study, we aim to identify predictive factors that correlate with nodal metastasis in patients affected by G1–G2 r‐NETs. A retrospective analysis of G1–G2 r‐NETs patients from eight tertiary Italian centers was performed. From January 1990 to January 2020, 210 patients were considered and 199 were included in the analysis. The data for nodal status were available for 159 cases. The nodal involvement rate was 9%. A receiver operating characteristic (ROC) curve analysis was performed to identify the diameter (&gt;11.5 mm) and Ki‐67 (3.5%), respectively, as cutoff values to predict nodal involvement. In a multivariate analysis, diameter &gt; 11.5 mm and vascular infiltration were independently correlated with nodal involvement. A risk scoring system was constructed using these two predictive factors. Tumor size and vascular invasion are predictors of nodal involvement. In addition, tumor size &gt; 11.5 mm is used as a driving parameter of better‐tailored treatment during pre‐operative assessment. Data from prospective studies are needed to validate these results and to guide decision‐making in r‐ NETs patients in clinical practice.openRicci A.D.; Pusceddu S.; Panzuto F.; Gelsomino F.; Massironi S.; De Angelis C.G.; Modica R.; Ricco G.; Torchio M.; Rinzivillo M.; Prinzi N.; Rizzi F.; Lamberti G.; Campana D.Ricci A.D.; Pusceddu S.; Panzuto F.; Gelsomino F.; Massironi S.; De Angelis C.G.; Modica R.; Ricco G.; Torchio M.; Rinzivillo M.; Prinzi N.; Rizzi F.; Lamberti G.; Campana D

    Hydrothermal activity on the CV parent body: New perspectives from the giant Transantarctic Mountains minimeteorite TAM 5.29

    Get PDF
    doi: 10.1111/maps.13429Abstract TAM5.29 is an extraterrestrial dust grain, collected on the Transantarctic Mountains (TAM). Its mineralogy is dominated by an Fe-rich matrix composed of platy fayalitic olivines and clasts of andradite surrounded by diopside-jarosite mantles; chondrules are absent. TAM5.29 records a complex geological history with evidence of extensive thermal metamorphism in the presence of fluids at T < 300 °C. Alteration was terminated by an impact, resulting in shock melt veins and compaction-orientated foliation of olivine. A second episode of alteration at lower temperatures (<100 °C) occurred postimpact and is either parent body or terrestrial in origin and resulted in the formation of iddingsite. The lack of chondrules is explained by random subsampling of the parent body, with TAM5.29 representing a matrix-only fragment. On the basis of bulk chemical composition, mineralogy, and geological history TAM5.29 demonstrates affinities to the CVox group with a mineralogical assemblage in between the Allende-like and Bali-like subgroups (CVoxA and TAM5.29 are rich in andradite, magnetite, and FeNiS, but CVoxA lacks hydrated minerals, common in TAM5.29; conversely, CVoxB are rich in hydrated phyllosilicates but contain almost pure fayalite, not found in TAM5.29). In addition, TAM5.29 has a slightly different metasomatic history, in between the oxidized and reduced CV metamorphic grades while also recording higher oxidizing conditions as compared to the known CV chondrites. This study represents the third CV-like cosmic dust particle, containing a unique composition, mineralogy, and fabric, demonstrating variation in the thermal metamorphic history of the CV parent body(-ies).Copyright © 2020, Nava, J. et al. This document is the authors' final accepted version of the journal article. You are advised to consult the published version if you wish to cite from it
    • 

    corecore