50 research outputs found

    Lipid Peroxidation and Antioxidant Consumption as Early Markers of Neurosurgery-Related Brain Injury in Children

    Get PDF
    BACKGROUND AND AIMS: Lipid peroxidation represents a marker of secondary brain injury both in traumatic and in non-traumatic conditions-as in major neurosurgical procedures-eventually leading to brain edema amplification and further brain damage. Malondialdehyde (MDA), a lipid peroxidation marker, and ascorbate, a marker of antioxidant status, can represent early indicators of this process within the cerebrospinal fluid (CSF). We hypothesized that changes in cerebral lipid peroxidation can be measured ex vivo following neurosurgery in children. METHODS: Thirty-six children (M:F = 19/17, median age 32.9 months; IQR 17.6-74.6) undergoing neurosurgery for brain tumor removal were admitted to the pediatric intensive care unit (PICU) in the postoperative period with an indwelling intraventricular catheter for intracranial pressure monitoring and CSF drainage. Plasma and CSF samples were obtained for serial measurement of MDA, ascorbate, and cytokines. RESULTS: An early brain-limited increase in lipid peroxidation was measured, with a significant increase from baseline of MDA in CSF (p = 0.007) but not in plasma. In parallel, ascorbate in CSF decreased (p = 0.05). Systemic inflammatory response following brain surgery was evidenced by plasma IL-6/IL-8 increase (p 0.0022 and 0.0106, respectively). No correlation was found between oxidative response and tumor site or histology (according to World Health Organization grading). Similarly, lipid peroxidation was unrelated to the length of surgery (mean 321 ± 73 min), or intraoperative blood loss (mean 20.9 ± 16.8% of preoperative volemia, 44% given hemotransfusions). Median PICU stay was 3.5 days (IQL range 2-5.5 d.), and postoperative ventilation need was 24 h (IQL range 20-61.5 h). The elevation in postoperative MDA in CSF compared with preoperative values correlated significantly with postoperative ventilation need (P = 0.05, r2 0168), while no difference in PICU stay was recorded. CONCLUSIONS: Our results indicate that lipid peroxidation increases consistently following brain surgery, and it is accompanied by a decrease in antioxidant defences; intraventricular catheterization offers a unique chance of oxidative process monitoring. Further studies are needed to evaluate whether monitoring post-neurosurgical oxidative stress in CSF is of prognostic utility

    A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor

    Get PDF
    © 2019 Elsevier Inc. Embryonal tumors with multilayered rosettes (ETMRs) are highly lethal infant brain cancers with characteristic amplification of Chr19q13.41 miRNA cluster (C19MC) and enrichment of pluripotency factor LIN28A. Here we investigated C19MC oncogenic mechanisms and discovered a C19MC-LIN28A-MYCN circuit fueled by multiple complex regulatory loops including an MYCN core transcriptional network and super-enhancers resulting from long-range MYCN DNA interactions and C19MC gene fusions. Our data show that this powerful oncogenic circuit, which entraps an early neural lineage network, is potently abrogated by bromodomain inhibitor JQ1, leading to ETMR cell death. Sin-Chan et al. uncover a C19MC-LIN28A-MYCN super-enhancer-dependent oncogenic circuit in embryonal tumors with multilayered rosettes (ETMRs). The circuit entraps an early neural lineage network to sustain embryonic epigenetic programming and is vulnerable to bromodomain inhibition, which promotes ETMR cell death

    Pattern of Relapse and Treatment Response in WNT- Activated Medulloblastoma

    Get PDF
    Over the past decade, wingless-activated (WNT) medulloblastoma has been identified as a candidate for therapy de-escalation based on excellent survival; however, a paucity of relapses has precluded additional analyses of markers of relapse. To address this gap in knowledge, an international cohort of 93 molecularly confirmed WNT MB was assembled, where 5-year progression-free survival is 0.84 (95%, 0.763-0.925) with 15 relapsed individuals identified. Maintenance chemotherapy is identified as a strong predictor of relapse, with individuals receiving high doses of cyclophosphamide or ifosphamide having only one very late molecularly confirmed relapse (p = 0.032). The anatomical location of recurrence is metastatic in 12 of 15 relapses, with 8 of 12 metastatic relapses in the lateral ventricles. Maintenance chemotherapy, specifically cumulative cyclophosphamide doses, is a significant predictor of relapse across WNT MB. Future efforts to de-escalate therapy need to carefully consider not only the radiation dose but also the chemotherapy regimen and the propensity for metastatic relapses

    WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma

    Get PDF
    TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6% +/- 8.7%, respectively (p < 0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89% +/- 2% vs. 57.4% +/- 1.8% (p < 0.01)). In contrast, beta-catenin mutation sensitized TP53 mutant cells to radiation (p < 0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5% +/- 1.5% in lithium treated cells vs. 56.6 +/- 3% (p < 0.01)) accompanied by increased number of.H2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33% +/- 8% for lithium treated cells vs. 27% +/- 3% for untreated controls (p = 0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.B.R.A.I.N Child Canada; Cancer Research UK; Brain Tumour Charity; Hungarian Brain Research Program [KTIA_13_NAP-A-V/3]; Janos Bolyai Scholarship of the Hungarian Academy of Sciences [TAMOP-4.2.2. A-11/1/KONV-2012-0025]; German Cancer Aid/Dr. Mildred Scheel Foundation for Cancer Research; Cure Childhood Cancer Foundation; St. Baldrick's Foundation; Southeastern Brain Tumor Foundation; Action Medical Research; [CZ.1.05/2.1.00/03.0101]; [CZ.1.07/2.3.00/20.0183

    TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma

    Get PDF
    Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association wit

    Therapeutic impact of cytoreductive surgery and irradiation of posterior fossa ependymoma in the molecular era: a retrospective multicohort analysis

    Get PDF
    PURPOSE: Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known. METHODS: Four independent nonoverlapping retrospective cohorts of posterior fossa ependymomas (n = 820) were profiled using genome-wide methylation arrays. Risk stratification models were designed based on known clinical and newly described molecular biomarkers identified by multivariable Cox proportional hazards analyses. RESULTS: Molecular subgroup is a powerful independent predictor of outcome even when accounting for age or treatment regimen. Incompletely resected EPN_PFA ependymomas have a dismal prognosis, with a 5-year progression-free survival ranging from 26.1% to 56.8% across all four cohorts. Although first-line (adjuvant) radiation is clearly beneficial for completely resected EPN_PFA, a substantial proportion of patients with EPN_PFB can be cured with surgery alone, and patients with relapsed EPN_PFB can often be treated successfully with delayed external-beam irradiation. CONCLUSION: The most impactful biomarker for posterior fossa ependymoma is molecular subgroup affiliation, independent of other demographic or treatment variables. However, both EPN_PFA and EPN_PFB still benefit from increased extent of resection, with the survival rates being particularly poor for subtotally resected EPN_PFA, even with adjuvant radiation therapy. Patients with EPN_PFB who undergo gross total resection are at lower risk for relapse and should be considered for inclusion in a randomized clinical trial of observation alone with radiation reserved for those who experience recurrence

    Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis

    Get PDF
    Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known

    Cytogenetic Prognostication Within Medulloblastoma Subgroups

    Get PDF
    PURPOSE: Medulloblastoma comprises four distinct molecular subgroups: WNT, SHH, Group 3, and Group 4. Current medulloblastoma protocols stratify patients based on clinical features: patient age, metastatic stage, extent of resection, and histologic variant. Stark prognostic and genetic differences among the four subgroups suggest that subgroup-specific molecular biomarkers could improve patient prognostication. PATIENTS AND METHODS: Molecular biomarkers were identified from a discovery set of 673 medulloblastomas from 43 cities around the world. Combined risk stratification models were designed based on clinical and cytogenetic biomarkers identified by multivariable Cox proportional hazards analyses. Identified biomarkers were tested using fluorescent in situ hybridization (FISH) on a nonoverlapping medulloblastoma tissue microarray (n = 453), with subsequent validation of the risk stratification models. RESULTS: Subgroup information improves the predictive accuracy of a multivariable survival model compared with clinical biomarkers alone. Most previously published cytogenetic biomarkers are only prognostic within a single medulloblastoma subgroup. Profiling six FISH biomarkers (GLI2, MYC, chromosome 11 [chr11], chr14, 17p, and 17q) on formalin-fixed paraffin-embedded tissues, we can reliably and reproducibly identify very low-risk and very high-risk patients within SHH, Group 3, and Group 4 medulloblastomas. CONCLUSION: Combining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially improves patient prognostication, even in the context of heterogeneous clinical therapies. The prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very low-risk groups of patients, making it an excellent tool for selecting patients for therapy intensification and therapy de-escalation in future clinical trials

    Long survival in an untreated solitary choroid plexus matastasis from renal cell carcinoma: case report and review of the literature

    No full text
    Brain metastases from renal cell carcinoma (RCC) are rare. Among them, the metastases localized only in the choroid plexus are exceptional and only six cases are reported in the literature. Here we report on a patient with a single choroid plexus metastasis from RCC which presented an unusual biological behaviour. For several years, such metastasis was interpreted as a benign intraventricular tumor and was not treated. Four years after the initial neuroradiological evidence, because of the appearance of symptoms, the brain metastasis was excised. We think that this unusual biological behaviour of the tumor determined the late inset of the neurological symptoms, despite the location at the choroid plexus that usually leads to an early obstructive hydrocephalus. To our knowledge, this 46 months survival is the longest survival of a patient affected by a single choroid plexus metastasis from RCC
    corecore