31 research outputs found

    Multi-wavelength optical determination of black and brown carbon in atmospheric aerosols

    Get PDF
    In this paper, a new way to apportion the absorption coefficient (babs) of carbonaceous atmospheric aerosols starting from a multi-wavelength optical analysis is shown. This methodology can disentangle and quantify the contribution to total absorption of equivalent black carbon (EBC) emitted by wood burning (EBCWB) and fossil fuel (EBCFF) as well as brown carbon (BrC) due to incomplete combustion. The method uses the information gathered at five different wavelengths in a renewed and upgraded version of the approach usually referred to as Aethalometer model. Moreover, we present the results of an apportionment study of carbonaceous aerosol sources performed in a rural area and in a coastal city, both located in the North-West of Italy. Results obtained by the proposed approach are validated against independent measurements of levoglucosan and radiocarbon. At the rural site the EBCWB and EBCFF relative contributions are about 40% and 60% in winter and 15% and 85% in summer, respectively. At the coastal urban site, EBCWB and EBCFF are about 15% and 85% during fall. The OC contribution to the wood burning source at the rural site results approximately 50% in winter and 10% in summer and about 15% at the coastal urban site in fall. The new methodology also provides a direct measurement of the absorption Ångström exponent of BrC (αBrC) which resulted αBrC=3.95±0.20

    Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps)

    Get PDF
    Abstract. The amount of reflected energy by snow and ice plays a fundamental role in their melting processes. Different non-ice materials (carbonaceous particles, mineral dust (MD), microorganisms, algae, etc.) can decrease the reflectance of snow and ice promoting the melt. The object of this paper is to assess the capability of field and satellite (EO-1 Hyperion) hyperspectral data to characterize the impact of light-absorbing impurities (LAIs) on the surface reflectance of ice and snow of the Vadret da Morteratsch, a large valley glacier in the Swiss Alps. The spatial distribution of both narrow-band and broad-band indices derived from Hyperion was analyzed in relation to ice and snow impurities. In situ and laboratory reflectance spectra were acquired to characterize the optical properties of ice and cryoconite samples. The concentrations of elemental carbon (EC), organic carbon (OC) and levoglucosan were also determined to characterize the impurities found in cryoconite. Multi-wavelength absorbance spectra were measured to compare the optical properties of cryoconite samples and local moraine sediments. In situ reflectance spectra showed that the presence of impurities reduced ice reflectance in visible wavelengths by 80–90 %. Satellite data also showed the outcropping of dust during the melting season in the upper parts of the glacier, revealing that seasonal input of atmospheric dust can decrease the reflectance also in the accumulation zone of the glacier. The presence of EC and OC in cryoconite samples suggests a relevant role of carbonaceous and organic material in the darkening of the ablation zone. This darkening effect is added to that caused by fine debris from lateral moraines, which is assumed to represent a large fraction of cryoconite. Possible input of anthropogenic activity cannot be excluded and further research is needed to assess the role of human activities in the darkening process of glaciers observed in recent years

    Source apportionment of PM10 in the Western Mediterranean based on observations from a cruise ship

    Get PDF
    Abstract Two intensive PM10 sampling campaigns were performed in the summers of 2009 and 2010 on the ship Costa Pacifica during cruises in the Western Mediterranean. Samples, mainly collected on an hourly basis, were analysed with different techniques (Particle Induced X-Ray Emission, PIXE; Energy Dispersive - X Ray Fluorescence, ED-XRF; Ion Chromatography, IC; Thermo-optical analysis) to retrieve the PM10 composition and its time pattern. The data were used for obtaining information about the sources of aerosol, with a focus on ship emissions, through apportionment using chemical marker compounds, correlation analysis and Positive Matrix Factorization (PMF) receptor modelling. For the campaign in 2010, 66% of the aerosol sulphate was found to be anthropogenic, only minor contributions of dust and sea salt sulphate were observed while the biogenic contribution, estimated based on the measurements of MSA, was found to be more important (26%), but influenced by large uncertainties. V and Ni were found to be suitable tracers of ship emissions during the campaigns. Four sources of aerosol were resolved by the PMF analysis; the source having the largest impact on PM10, BC and sulphate was identified as a mixed source, comprising emissions from ships. The correlations between sulphate and V and Ni showed the influence of ship emissions on sulphate in marine air masses. For the leg Palma–Tunis crossing a main ship route, the correlations between aerosol sulphate and V and Ni were particularly strong (r2 = 0.9 for both elements)

    Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data

    Get PDF
    Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to seven-wavelength Aethalometer data, using multi-angle absorption photometer (MAAP) data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to five-wavelength offline absorption measurements obtained with a multi-wavelength absorbance analyzer (MWAA), which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June\u2013September 2014). The mean absorption coefficient (at 637 nm) during this period was 1.8 +/-2.1Mm-1, with a maximum of 15.9Mm-1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption \uc5ngstr\uf6m exponent (\ue5ABS/ retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct \ue5ABS, which is commonly implemented in brown carbon contribution calculations. Additionally, we found that the wavelength dependence of uncompensated Aethalometer attenuation data significantly correlates with the \ue5ABS retrieved from offline MWAA measurements

    Cryoconite: an efficient accumulator of radioactive fallout in glacial environments

    Get PDF
    Abstract. Cryoconite is rich in natural and artificial radioactivity, but a discussion about its ability to accumulate radionuclides is lacking. A characterization of cryoconite from two Alpine glaciers is presented here. Results confirm that cryoconite is significantly more radioactive than the matrices usually adopted for the environmental monitoring of radioactivity, such as lichens and mosses, with activity concentrations exceeding 10 000 Bq kg−1 for single radionuclides. This makes cryoconite an ideal matrix to investigate the deposition and occurrence of radioactive species in glacial environments. In addition, cryoconite can be used to track environmental radioactivity sources. We have exploited atomic and activity ratios of artificial radionuclides to identify the sources of the anthropogenic radioactivity accumulated in our samples. The signature of cryoconite from different Alpine glaciers is compatible with the stratospheric global fallout and Chernobyl accident products. Differences are found when considering other geographic contexts. A comparison with data from literature shows that Alpine cryoconite is strongly influenced by the Chernobyl fallout, while cryoconite from other regions is more impacted by events such as nuclear test explosions and satellite reentries. To explain the accumulation of radionuclides in cryoconite, the glacial environment as a whole must be considered, and particularly the interaction between ice, meltwater, cryoconite and atmospheric deposition. We hypothesize that the impurities originally preserved into ice and mobilized with meltwater during summer, including radionuclides, are accumulated in cryoconite because of their affinity for organic matter, which is abundant in cryoconite. In relation to these processes, we have explored the possibility of exploiting radioactivity to date cryoconite. </jats:p

    Cryoconite as an efficient monitor for the deposition of radioactive fallout in glacial environments

    Get PDF
    &amp;lt;p&amp;gt;&amp;lt;strong&amp;gt;Abstract.&amp;lt;/strong&amp;gt; Cryoconite is extremely rich in natural and artificial radionuclides, but a comprehensive discussion about its ability to accumulate radioactivity is lacking. A characterization of cryoconite from two Alpine glaciers is presented and discussed. Results confirm that cryoconite is among the most radioactive environmental matrices, with activity concentrations exceeding 10,000&amp;amp;#8201;Bq&amp;amp;#8201;kg&amp;lt;sup&amp;gt;&amp;amp;#8722;1&amp;lt;/sup&amp;gt; for single radionuclides. Atomic and activity ratios of Pu and Cs radioactive isotopes reveal that the artificial radioactivity of Alpine cryoconite is mostly related to the stratospheric fallout from nuclear weapon tests and to the 1986 Chernobyl accidents. The signature of cryoconite radioactivity is thus influenced by both local and more widespread events. The extreme accumulation of radioactivity in cryoconite can be explained only considering the glacial environment as a whole, and particularly the interaction between ice, meltwater, cryoconite and atmospheric deposition. Cryoconite is an ideal monitor to investigate the deposition and occurrence of natural and artificial radioactive species in glacial environment.&amp;lt;/p&amp;gt; </jats:p

    Brown carbon and thermal-optical analysis: A correction based onoptical multi-wavelength apportionment of atmospheric aerosols

    No full text
    reserved4siThermo-optical analysis is widely adopted for the quantitative determination of total, TC, organic, OC and elemental, EC, Carbon in aerosol samples collected on quartz fibre filters. Nevertheless, the methodology presents several issues in particular about the artefacts related to the formation of pyrolytic carbon. It is usually neglected the uncertainty due to the possible presence of brown carbon (BrC) in the sample under analysis, i.e. the optically active fraction of OC produced by biomass burning and with characteristics intermediate between OC and EC. We introduce here a novel correction to the standard thermooptical protocol based on the determination of the fraction of the sample absorbance due to the (possible) presence of BrC. This is achievable thanks to the coupled use of the Multi Wavelength Absorbance Analyser (MWAA) of the University of Genoa and a standard Sunset Inc. EC/OC analyser. Our correction provides a firmer OC/EC separation as well as an operative quantification of the BrC mass. The methodology has been validated against independent determination of the levoglucosan content in the same filters sent to the Sunset analysis. Corrections up to 23% in the OC and EC values, determined via the standard and new thermo-optical analysis, have been found in a set of PM10 (i.e. Particulate Matter with aerodynamic diameter less than 10 mm) samples collected wintertime at a mountain site in Northern Italy.mixedMassabò, D.; Caponi, L.; Bove, M.C.; Prati, P.Massabo', Dario; Caponi, L.; Bove, MARIA CHIARA; Prati, Paol

    Source-specific light absorption by carbonaceous components in the complex aerosol matrix from yearly filter-based measurements

    Get PDF
    Understanding the sources of light-absorbing organic (brown) carbon (BrC) and its interaction with black carbon (BC) and other non-refractory particulate matter (NR-PM) fractions is important for reducing uncertainties in the aerosol direct radiative forcing. In this study, we combine multiple filter-based techniques to achieve long-term, spectrally resolved, source- and species-specific atmospheric absorption closure. We determine the mass absorption efficiency (MAE) in dilute bulk solutions at 370 nm to be equal to 1.4 m2 g−1 for fresh biomass smoke, 0.7 m2 g−1 for winter-oxygenated organic aerosol (OA), and 0.13 m2 g−1 for other less absorbing OA. We apply Mie calculations to estimate the contributions of these fractions to total aerosol absorption. While enhanced absorption in the near-UV has been traditionally attributed to primary biomass smoke, here we show that anthropogenic oxygenated OA may be equally important for BrC absorption during winter, especially at an urban background site. We demonstrate that insoluble tar balls are negligible in residential biomass burning atmospheric samples of this study and thus could attribute the totality of the NR-PM absorption at shorter wavelengths to methanol-extractable BrC. As for BC, we show that the mass absorption cross-section (MAC) of this fraction is independent of its source, while we observe evidence for a filter-based lensing effect associated with the presence of NR-PM components. We find that bare BC has a MAC of 6.3 m2 g−1 at 660 nm and an absorption Ångström exponent of 0.93 ± 0.16, while in the presence of coatings its absorption is enhanced by a factor of ∼ 1.4. Based on Mie calculations of closure between observed and predicted total light absorption, we provide an indication for a suppression of the filter-based lensing effect by BrC. The total absorption reduction remains modest, ∼ 10 %–20 % at 370 nm, and is restricted to shorter wavelengths, where BrC absorption is significant. Overall, our results allow an assessment of the relative importance of the different aerosol fractions to the total absorption for aerosols from a wide range of sources and atmospheric ages. When integrated with the solar spectrum at 300–900 nm, bare BC is found to contribute around two-thirds of the solar radiation absorption by total carbonaceous aerosols, amplified by the filter-based lensing effect (with an interquartile range, IQR, of 8 %–27 %), while the IQR of the contributions by particulate BrC is 6 %–13 % (13 %–20 % at the rural site during winter). Future studies that will directly benefit from these results include (a) optical modelling aiming at understanding the absorption profiles of a complex aerosol composed of BrC, BC and lensing-inducing coatings; (b) source apportionment aiming at understanding the sources of BC and BrC from the aerosol absorption profiles; (c) global modelling aiming at quantifying the most important aerosol absorbers.ISSN:1680-7375ISSN:1680-736
    corecore