239 research outputs found
Designing a fashion driving forces website as an educational resource
Electronic educational resources support search activities and manipulate information effectively in learning environments, thus enhancing education. This paper discusses the development of an electronic timeline database that classifies design and fashion details; technological developments; socio-economical influences; availability and popularity within fashion trends; marketing and distribution; and influential people including designers, in a manner that facilitates ease of cross referencing events at the same point in time for a rich analysis of fashion. The study focuses on the driving forces of fashion during the 1920s as a starting point for a much larger database. The data is presented in the form of a website allowing students to better understand fashion trends with macro-environmental and marketing strategies. The electronic resource is a useful tool for fashion, textile and marketing students as an educational interface providing design, production and marketing data for fashion-related products particularly useful for the analysis of fashion trends
Deciphering the origin and evolution of Hepatitis B viruses by means of a family of non-enveloped fish viruses
Hepatitis B viruses (HBVs), which are enveloped viruses with reverse-transcribed DNA genomes, constitute the family Hepadnaviridae. An outstanding feature of HBVs is their streamlined genome organization with extensive gene overlap. Remarkably, the ∼1,100 bp open reading frame (ORF) encoding the envelope proteins is fully nested within the ORF of the viral replicase P. Here, we report the discovery of a diversified family of fish viruses, designated nackednaviruses, which lack the envelope protein gene, but otherwise exhibit key characteristics of HBVs including genome replication via protein-primed reverse-transcription and utilization of structurally related capsids. Phylogenetic reconstruction indicates that these two virus families separated more than 400 million years ago before the rise of tetrapods. We show that HBVs are of ancient origin, descending from non-enveloped progenitors in fishes. Their envelope protein gene emerged de novo, leading to a major transition in viral lifestyle, followed by co-evolution with their hosts over geologic eras
Multidifferential cross section measurements of νμ -argon quasielasticlike reactions with the MicroBooNE detector
We report on a flux-integrated multidifferential measurement of charged-current muon neutrino scattering on argon with one muon and one proton in the final state using the Booster Neutrino Beam and MicroBooNE detector at Fermi National Accelerator Laboratory. The data are studied as a function of various kinematic imbalance variables and of a neutrino energy estimator, and are compared to a number of event generator predictions. We find that the measured cross sections in different phase-space regions are sensitive to nuclear effects. Our results provide precision data to test and improve the neutrino-nucleus interaction models needed to perform high-accuracy oscillation analyses. Specific regions of phase space are identified where further model refinements are most needed
First Double-Differential Measurement of Kinematic Imbalance in Neutrino Interactions with the MicroBooNE Detector
We report the first measurement of flux-integrated double-differential quasielasticlike neutrino-argon cross sections, which have been made using the Booster Neutrino Beam and the MicroBooNE detector at Fermi National Accelerator Laboratory. The data are presented as a function of kinematic imbalance variables which are sensitive to nuclear ground-state distributions and hadronic reinteraction processes. We find that the measured cross sections in different phase-space regions are sensitive to different nuclear effects. Therefore, they enable the impact of specific nuclear effects on the neutrino-nucleus interaction to be isolated more completely than was possible using previous single-differential cross section measurements. Our results provide precision data to help test and improve neutrino-nucleus interaction models. They further support ongoing neutrino-oscillation studies by establishing phase-space regions where precise reaction modeling has already been achieved
First demonstration of O (1 ns) timing resolution in the MicroBooNE liquid argon time projection chamber
MicroBooNE is a neutrino experiment located in the Booster Neutrino Beamline (BNB) at Fermilab, which collected data from 2015 to 2021. MicroBooNE's liquid argon time projection chamber (LArTPC) is accompanied by a photon detection system consisting of 32 photomultiplier tubes used to measure the argon scintillation light and determine the timing of neutrino interactions. Analysis techniques combining light signals and reconstructed tracks are applied to achieve a neutrino interaction time resolution of O(1 ns). The result obtained allows MicroBooNE to access the nanosecond beam structure of the BNB for the first time. The timing resolution achieved will enable significant enhancement of cosmic background rejection for all neutrino analyses. Furthermore, the ns timing resolution opens new avenues to search for long-lived-particles such as heavy neutral leptons in MicroBooNE, as well as in future large LArTPC experiments, namely the SBN program and DUNE
The genome landscape of indigenous African cattle
Background: The history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems.
Results: We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/ or pathways controlling anemia and feeding behavior in the trypanotolerant N’Dama, coat color and horn development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds.
Conclusions: Our findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while emphasizing the opportunities for sustainable improvement of livestock productivity on the continent
First measurement of quasi-elastic baryon production in muon anti-neutrino interactions in the MicroBooNE detector
We present the first measurement of the cross section of Cabibbo-suppressed
baryon production, using data collected with the MicroBooNE detector
when exposed to the neutrinos from the Main Injector beam at the Fermi National
Accelerator Laboratory. The data analyzed correspond to
protons on target of neutrino mode running and protons on
target of anti-neutrino mode running. An automated selection is combined with
hand scanning, with the former identifying five candidate production
events when the signal was unblinded, consistent with the GENIE prediction of
events. Several scanners were employed, selecting between three
and five events, compared with a prediction from a blinded Monte Carlo
simulation study of events. Restricting the phase space to only
include baryons that decay above MicroBooNE's detection thresholds,
we obtain a flux averaged cross section of
cmAr, where statistical and systematic uncertainties are combined
- …