2,886 research outputs found

    Complete homochirality induced by the nonlinear autocatalysis and recycling

    Full text link
    A nonlinear autocatalysis of a chiral substance is shown to achieve homochirality in a closed system, if the back-reaction is included. Asymmetry in the concentration of two enantiomers or the enantiometric excess increases due to the nonlinear autocatalysis. Furthermore, when the back-reaction is taken into account, the reactant supplied by the decomposition of the enantiomers is recycled to produce more and more the dominant one, and eventually the homochirality is established.Comment: 4 pages, 2 figure

    Measuring and Correcting Wind-Induced Pointing Errors of the Green Bank Telescope Using an Optical Quadrant Detector

    Full text link
    Wind-induced pointing errors are a serious concern for large-aperture high-frequency radio telescopes. In this paper, we describe the implementation of an optical quadrant detector instrument that can detect and provide a correction signal for wind-induced pointing errors on the 100m diameter Green Bank Telescope (GBT). The instrument was calibrated using a combination of astronomical measurements and metrology. We find that the main wind-induced pointing errors on time scales of minutes are caused by the feedarm being blown along the direction of the wind vector. We also find that wind-induced structural excitation is virtually non-existent. We have implemented offline software to apply pointing corrections to the data from imaging instruments such as the MUSTANG 3.3 mm bolometer array, which can recover ~70% of sensitivity lost due to wind-induced pointing errors. We have also performed preliminary tests that show great promise for correcting these pointing errors in real-time using the telescope's subreflector servo system in combination with the quadrant detector signal.Comment: 17 pages, 11 figures; accepted for publication in PAS

    Transients Among Binaries with Evolved Low-Mass Companions

    Get PDF
    We show that stable disk accretion should be very rare among low-mass X-ray binaries and cataclysmic variables whose evolution is driven by the nuclear expansion of the secondary star on the first giant branch. Stable accretion is confined to neutron-star systems where the secondary is still relatively massive, and some supersoft white dwarf accretors. All other systems, including all black-hole systems, appear as soft X-ray transients or dwarf novae. All long-period neutron-star systems become transient well before most of the envelope mass is transferred, and remain transient until envelope exhaustion. This complicates attempts to compare the numbers of millisecond pulsars in the Galactic disk with their LMXB progenitors, and also means that the pulsar spin rates are fixed in systems which are transient rather than steady, contrary to common assumption. The long-period persistent sources Sco X-2, LMC X-2, Cyg X-2 and V395 Car must have minimum companion masses > 0.75 Msun if they contain neutron stars, and still larger masses if they contain black holes. The companion in the neutron-star transient GRO J1744-2844 must have a mass <0.87 Msun. The existence of any steady sources at all at long periods supports the ideas that (a) the accretion disks in many, if not all, LMXBs are strongly irradiated by the central source, and (b) mass transfer is thermally unstable in long-period supersoft X-ray sources.Comment: 10 pages, Latex, 1 ps figure, Ap.J., accepted Feb. 15, 199

    Enhanced X-ray variability from V1647 Ori, the young star in outburst illuminating McNeil's Nebula

    Get PDF
    We report a ~38 ks X-ray observation of McNeil's Nebula obtained with XMM on 2004 April 4. V1647 Ori, the young star in outburst illuminating McNeil's Nebula, is detected with XMM and appears variable in X-rays. We investigate the hardness ratio variability and time variations of the event energy distribution with quantile analysis, and show that the large increase of the count rate from V1647 Ori observed during the second half of the observation is not associated with any large plasma temperature variations as for typical X-ray flares from young low-mass stars. X-ray spectral fitting shows that the bulk (~75%) of the intrinsic X-ray emission in the 0.5-8 keV energy band comes from a soft plasma component (0.9 keV) reminiscent of the X-ray spectrum of the classical T Tauri star TW Hya, for which X-ray emission is believed to be generated by an accretion shock onto the photosphere of a low-mass star. The hard plasma component (4.2 keV) contributes ~25% of the total X-ray emission, and can be understood only in the framework of plasma heating sustained by magnetic reconnection events. We find a hydrogen column density of NH=4.1E22 cm-2, which points out a significant excess of hydrogen column density compared to the value derived from optical/IR observations, consistent with the picture of the rise of a wind/jet unveiled from ground optical spectroscopy. The X-ray flux observed with XMM ranges from roughly the flux observed by Chandra on 2004 March 22 (~10 times greater than the pre-outburst X-ray flux) to a value two times greater than that caught by Chandra on 2004 March 7 (~200 times greater than the pre-outburst X-ray flux). We have investigated the possibility that V1647 Ori displays a periodic variation in X-ray brightness as suggested by the combined Chandra+XMM data set (abridged).Comment: 11 pages and 8 Figures. Accepted for publication by Astronomy & Astrophysic

    X-ray Spectroscopy of the IP PQ Gem

    Full text link
    Using RXTE and ASCA data, we investigate the roles played by occultation and absorption in the X-ray spin pulse profile of the Intermediate Polar PQ Gem. From the X-ray light curves and phase-resolved spectroscopy, we find that the intensity variations are due to a combination of varying degrees of absorption and the accretion regions rotating behind the visible face of the white dwarf. These occultation and absorption effects are consistent with those expected from the accretion structures calculated from optical polarisation data. We can reproduce the changes in absorber covering fraction either from geometrical effects, or by considering that the material in the leading edge of the accretion curtain is more finely fragmented than in other parts of the curtain. We determine a white dwarf mass of ~1.2 using the RXTE data.Comment: Accepted for publication in MNRA

    Sprouty2 mediated tuning of signalling is essential for somite myogenesis

    Get PDF
    Background: Negative regulators of signal transduction cascades play critical roles in controlling different aspects of normal embryonic development. Sprouty2 (Spry2) negatively regulates receptor tyrosine kinases (RTK) and FGF signalling and is important in differentiation, cell migration and proliferation. In vertebrate embryos, Spry2 is expressed in paraxial mesoderm and in forming somites. Expression is maintained in the myotome until late stages of somite differentiation. However, its role and mode of action during somite myogenesis is still unclear. Results: Here, we analysed chick Spry2 expression and showed that it overlaps with that of myogenic regulatory factors MyoD and Mgn. Targeted mis-expression of Spry2 led to inhibition of myogenesis, whilst its C-terminal domain led to an increased number of myogenic cells by stimulating cell proliferation. Conclusions: Spry2 is expressed in somite myotomes and its expression overlaps with myogenic regulatory factors. Overexpression and dominant-negative interference showed that Spry2 plays a crucial role in regulating chick myogenesis by fine tuning of FGF signaling through a negative feedback loop. We also propose that mir-23, mir-27 and mir-128 could be part of the negative feedback loop mechanism. Our analysis is the first to shed some light on in vivo Spry2 function during chick somite myogenesis

    Angular Momentum and the Formation of Stars and Black Holes

    Full text link
    The formation of compact objects like stars and black holes is strongly constrained by the requirement that nearly all of the initial angular momentum of the diffuse material from which they form must be removed or redistributed during the formation process. The mechanisms that may be involved and their implications are discussed for (1) low-mass stars, most of which probably form in binary or multiple systems; (2) massive stars, which typically form in clusters; and (3) supermassive black holes that form in galactic nuclei. It is suggested that in all cases, gravitational interactions with other stars or mass concentrations in a forming system play an important role in redistributing angular momentum and thereby enabling the formation of a compact object. If this is true, the formation of stars and black holes must be a more complex, dynamic, and chaotic process than in standard models. The gravitational interactions that redistribute angular momentum tend to couple the mass of a forming object to the mass of the system, and this may have important implications for mass ratios in binaries, the upper stellar IMF in clusters, and the masses of supermassive black holes in galaxies.Comment: Accepted by Reports on Progress in Physic
    • 

    corecore