11 research outputs found

    Structural Organization of the Presynaptic Density at Identified Synapses in the Locust Central Nervous System

    Get PDF
    In a synaptic active zone, vesicles aggregate around a densely staining structure called the presynaptic density. We focus on its three-dimensional architecture and a major molecular component in the locust. We used electron tomography to study the presynaptic density in synapses made in the brain by identified second-order neuron of the ocelli. Here, vesicles close to the active zone are organized in two rows on either side of the presynaptic density, a level of organization not previously reported in insect central synapses. The row of vesicles that is closest to the density's base includes vesicles docked with the presynaptic membrane and thus presumably ready for release, whereas the outer row of vesicles does not include any that are docked. We show that a locust ortholog of the Drosophila protein Bruchpilot is localized to the presynaptic density, both in the ocellar pathway and compound eye visual neurons. An antibody recognizing the C-terminus of the Bruchpilot ortholog selectively labels filamentous extensions of the presynaptic density that reach out toward vesicles. Previous studies on Bruchpilot have focused on its role in neuromuscular junctions in Drosophila, and our study shows it is also a major functional component of presynaptic densities in the central nervous system of an evolutionarily distant insect. Our study thus reveals Bruchpilot executes similar functions in synapses that can sustain transmission of small graded potentials as well as those relaying large, spike-evoked signals. J. Comp. Neurol. 520:384–400, 2012. © 2011 Wiley Periodicals, Inc

    The viral protein corona directs viral pathogenesis and amyloid aggregation

    Get PDF
    Artificial nanoparticles accumulate a protein corona layer in biological fluids, which significantly influences their bioactivity. As nanosized obligate intracellular parasites, viruses share many biophysical properties with artificial nanoparticles in extracellular environments and here we show that respiratory syncytial virus (RSV) and herpes simplex virus type 1 (HSV-1) accumulate a rich and distinctive protein corona in different biological fluids. Moreover, we show that corona pre-coating differentially affects viral infectivity and immune cell activation. In addition, we demonstrate that viruses bind amyloidogenic peptides in their corona and catalyze amyloid formation via surface-assisted heterogeneous nucleation. Importantly, we show that HSV-1 catalyzes the aggregation of the amyloid beta-peptide (A beta(42)), a major constituent of amyloid plaques in Alzheimer's disease, in vitro and in animal models. Our results highlight the viral protein corona as an acquired structural layer that is critical for viral-host interactions and illustrate a mechanistic convergence between viral and amyloid pathologies.Peer reviewe

    Black Charcoal for Green and Scalable Wooden Electrodes for Supercapabatteries

    No full text
    A green, though black, sustainable and low-cost carbon material-charcoal produced from wood-is developed for electricity storage. Charcoal electrodes are fabricated by ball-milling charcoal and adding protein nanofibril binders. The charcoal electrode presents a capacitance of 360 F g(-1) and a conductivity of 0.2 S m(-1). A pair of redox peaks is observed in the cyclic voltammetry and assigned to originate from quinone groups. Compared with other wooden electrodes, these charcoal electrodes display better cycling stability with 88% capacity retention after 1000 cycles. Their discharge capacity is 2.5 times that of lignosulfonate/graphite hybrid electrodes.Funding Agencies|Knut and Alice Wallenberg Foundation (KAW)Knut &amp; Alice Wallenberg Foundation; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]</p

    Nanomorphology of Bulk Heterojunction Organic Solar Cells in 2D and 3D Correlated to Photovoltaic Performance

    No full text
    Control of the nanoscale morphology of the donor\ue2ˆ’acceptor material blends in organic solar cells is critical for optimizing the photovoltaic performances. The influence of intrinsic (acceptor materials) and extrinsic (donor:acceptor weight ratio, substrate, solvent) parameters was investigated, by atomic force microscopy (AFM) and electron tomography (ET), on the nanoscale phase separation of blends of a low-band-gap alternating polyfluorene copolymers (APFO-Green9) with [6,6]-phenyl-C71-butyric acid methyl ester ([70]PCBM). The photovoltaic performances display an optimal efficiency for the device elaborated with a 1:3 APFO-Green polymer:[70]PCBM weight ratio and spin-coated from chloroform solution. The associated active layer morphology presents small phase-separated domains which is a good balance between a large interfacial donor\ue2ˆ’acceptor area and continuous paths of the donor and acceptor phases to the electrodes

    Nup153 Affects Entry of Messenger and Ribosomal Ribonucleoproteins into the Nuclear Basket during Export

    No full text
    A specific messenger ribonucleoprotein (RNP) particle, Balbiani ring (BR) granules in the dipteran Chironomus tentans, can be visualized during passage through the nuclear pore complex (NPC). We have now examined the transport through the nuclear basket preceding the actual translocation through the NPC. The basket consists of eight fibrils anchored to the NPC core by nucleoprotein Nup153. On nuclear injection of anti-Nup153, the transport of BR granules is blocked. Many granules are retained on top of the nuclear basket, whereas no granules are seen in transit through NPC. Interestingly, the effect of Nup153 seems distant from the antibody-binding site at the base of the basket. We conclude that the entry into the basket is a two-step process: an mRMP first binds to the tip of the basket fibrils and only then is it transferred into the basket by a Nup153-dependent process. It is indicated that ribosomal subunits follow a similar pathway

    The central element of the synaptonemal complex in mice is organized as a bilayered junction structure

    No full text
    The synaptonemal complex transiently stabilizes pairing interactions between homologous chromosomes during meiosis. Assembly of the synaptonemal complex is mediated through integration of opposing transverse filaments into a central element, a process that is poorly understood. We have, here, analyzed the localization of the transverse filament protein SYCP1 and the central element proteins SYCE1, SYCE2 and SYCE3 within the central region of the synaptonemal complex in mouse spermatocytes using immunoelectron microscopy. Distribution of immuno-gold particles in a lateral view of the synaptonemal complex, supported by protein interaction data, suggest that the N-terminal region of SYCP1 and SYCE3 form a joint bilayered central structure, and that SYCE1 and SYCE2 localize in between the two layers. We find that disruption of SYCE2 and TEX12 (a fourth central element protein) localization to the central element abolishes central alignment of the N-terminal region of SYCP1. Thus, our results show that all four central element proteins, in an interdependent manner, contribute to stabilization of opposing N-terminal regions of SYCP1, forming a bilayered transverse-filament–central-element junction structure that promotes synaptonemal complex formation and synapsis.MOE (Min. of Education, S’pore)Published versio

    The Human Skin Barrier Is Organized as Stacked Bilayers of Fully Extended Ceramides with Cholesterol Molecules Associated with the Ceramide Sphingoid Moiety

    Get PDF
    The skin barrier is fundamental to terrestrial life and its evolution; it upholds homeostasis and protects against the environment. Skin barrier capacity is controlled by lipids that fill the extracellular space of the skin's surface layer-the stratum corneum. Here we report on the determination of the molecular organization of the skin's lipid matrix in situ, in its near-native state, using a methodological approach combining very high magnification cryo-electron microscopy (EM) of vitreous skin section defocus series, molecular modeling, and EM simulation. The lipids are organized in an arrangement not previously described in a biological system-stacked bilayers of fully extended ceramides (CERs) with cholesterol molecules associated with the CER sphingoid moiety. This arrangement rationalizes the skin's low permeability toward water and toward hydrophilic and lipophilic substances, as well as the skin barrier's robustness toward hydration and dehydration, environmental temperature and pressure changes, stretching, compression, bending, and shearing
    corecore