79 research outputs found

    Are haematological parameters related to body condition, ornamentation and breeding success in wild burrowing parrots Cyanoliseus patagonus

    Get PDF
    Haematology and plasma biochemistry values are useful tools for ecological research. They have been used to investigate the physiological state and the adaptation of individuals to their habitat, changes in nutritional state of birds, body condition, the level of parasite infestation, male quality, the physical condition of nestlings, etc. In the present study we tested the role of haematological and plasma biochemistry values in burrowing parrots Cyanoliseus patagonus (Aves, Psittaciformes) for determining individual quality and condition. We measured triglyceride levels, plasma protein levels, plasma hue and erythrocyte sedimentation rate of nestlings and breeding adults in a colony in the north of Patagonia, Argentina. We found that plasma triglyceride levels strongly relate to changes in individual condition. Plasma levels of triglycerides were found to be strongly related to mass change, hatching order and brood size in nestlings. Levels of triglycerides were found to reflect reproductive effort in adults: males fledging larger broods had decreased levels of triglycerides. Adults with lower body condition had increased erythrocyte sedimentation rates. Plasma hue showed a strong relationship with an ornamental trait, the red abdominal patch of male adults, and with parameters of structural body size. Thus, we have shown that haematological and plasma biochemistry values, especially plasma levels of triglycerides, are good indicators of individual quality and condition in nestlings and breeding birds

    1,1â€Č-Fc(4-C6H4CO2Et)2and its unusual salt derivative withZâ€Č = 5,catena-[Na+]2[1,1â€Č-Fc(4-C6H4CO2−)2]·0.6H2O [1,1â€Č-Fc = (η5-(C5H4)2Fe]

    Get PDF
    The neutral diethyl 4,4'-(ferrocene-1,1'-diyl)dibenzoate, Fe[[eta]5-(C5H4)(4-C6H4CO2Et)]2 (I), yields (II) (following base hydrolysis) as the unusual complex salt poly[disodium bis[diethyl 4,4'-(ferrocene-1,1'-diyl)dibenzoate] 0.6-hydrate] or [Na+]2[Fe{[eta]5-(C5H4)-4-C6H4CO_2^-}2]·0.6H2O with Z' = 5. Compound (I) crystallizes in the triclinic system, space group P\bar 1, with two molecules having similar geometry in the asymmetric unit (Z' = 2). The salt complex (II) crystallizes in the orthorhombic system, space group Pbca, with the asymmetric unit comprising poly[decasodium pentakis[diethyl 4,4'-(ferrocene-1,1'-diyl)dibenzoate] trihydrate] or [Na+]10[Fe{[eta]5-(C5H4)-4-C6H4CO_2^-}2]5·3H2O. The five independent 1,1'-Fc[(4-C6H4CO2)-]2 dianions stack in an offset ladder (stepped) arrangement with the ten benzoates mutually oriented cisoid towards and bonded to a central layer comprising the ten Na+ ions and three water molecules [1,1'-Fc = [eta]5-(C5H4)2Fe]. The five dianions differ in the cisoid orientations of their pendant benzoate groups, with four having their -C6H4- groups mutually oriented at interplanar angles from 0.6 (3) to 3.2 (3)° (as [pi]...[pi] stacked C6 rings) and interacting principally with Na+ ions. The fifth dianion is distorted and opens up to an unprecedented -C6H4- interplanar angle of 18.6 (3)° through bending of the two 4-C6H4CO2 groups and with several ionic interactions involving the three water molecules (arranged as one-dimensional zigzag chains in the lattice). Overall packing comprises two-dimensional layers of Na+ cations coordinated mainly by the carboxylate O atoms, and one-dimensional water chains. The non-polar Fc(C6H4)2 groups are arranged perpendicular to the layers and mutually interlock through a series of efficient C-H...[pi] stacking contacts in a herringbone fashion to produce an overall segregation of polar and non-polar entities

    Evolutionary factors affecting the cross-species utility of newly developed microsatellite markers in seabirds

    Get PDF
    Microsatellite loci are ideal for testing hypotheses relating to genetic segregation at fine spatio-temporal scales. They are also conserved among closely related species, making them potentially useful for clarifying interspecific relationships between recently diverged taxa. However, mutations at primer binding sites may lead to increased non-amplification, or disruptions that may lead to decreased polymorphism in non-target species. Furthermore, high mutation rates and constraints on allele size may also lead, with evolutionary time, to an increase in convergently evolved allele size classes, biasing measures of interspecific genetic differentiation. Here, we used next-generation sequencing to develop microsatellite markers from a shotgun genome sequence of the sub-Antarctic seabird, the thin-billed prion (Pachyptila belcheri), that we tested for cross-species amplification in other Pachyptila and related sub-Antarctic species. We found that heterozygosity decreased and the proportion of non-amplifying loci increased with phylogenetic distance from the target species. Surprisingly, we found that species trees estimated from interspecific FST provided better approximations of mtDNA relationships among the studied species than those estimated using DC, even though FST was more affected by null alleles. We observed a significantly non-linear second order polynomial relationship between microsatellite and mtDNA distances. We propose that the loss of linearity with increasing mtDNA distance stems from an increasing proportion of homoplastic allele size classes that are identical in state, but not identical by descent. Therefore, despite high cross-species amplification success and high polymorphism among the closely related Pachyptila species, we caution against the use of microsatellites in phylogenetic inference among distantly related taxa

    Evaluating the impact of handling and logger attachment on foraging parameters and physiology in southern rockhopper penguins

    Get PDF
    Logger technology has revolutionised our knowledge of the behaviour and physiology of free-living animals but handling and logger attachments may have negative effects on the behaviour of the animals and their welfare. We studied southern rockhopper penguin ( Eudyptes chrysocome ) females during the guard stage in three consecutive breeding seasons (2008/09−2010/11) to evaluate the effects of handling and logger attachment on foraging trip duration, dive behaviour and physiological parameters. Smaller dive loggers (TDRs) were used in 2010/11 for comparison to larger GPS data loggers used in all three seasons and we included two categories of control birds: handled controls and PIT control birds that were previously marked with passive integrative transponders (PITs), but which had not been handled during this study. Increased foraging trip duration was only observed in GPS birds during 2010/11, the breeding season in which we also found GPS birds foraging further away from the colony and travelling longer distances. Compared to previous breeding seasons, 2010/11 may have been a period with less favourable environmental conditions, which would enhance the impact of logger attachments. A comparison between GPS and TDR birds showed a significant difference in dive depth frequencies with birds carrying larger GPS data loggers diving shallower. Mean and maximum dive depths were similar between GPS and TDR birds. We measured little impact of logger attachments on physiological parameters (corticosterone, protein, triglyceride levels and leucocyte counts). Overall, handling and short-term logger attachments (1-3 days) showed limited impact on the behaviour and physiology of the birds but care must be taken with the size of data loggers on diving seabirds. Increased drag may alter their diving behaviour substantially, thus constraining them in their ability to catch prey. Results obtained in this study indicate that data recorded may also not represent their normal dive behaviour

    Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?

    Get PDF
    Background: Parasites can exert selection pressure on their hosts through effects on survival, on reproductive success, on sexually selected ornament, with important ecological and evolutionary consequences, such as changes in population viability. Consequently, hemoparasites have become the focus of recent avian studies. Infection varies significantly among taxa. Various factors might explain the differences in infection among taxa, including habitat, climate, host density, the presence of vectors, life history and immune defence. Feeding behaviour can also be relevant both through increased exposure to vectors and consumption of secondary metabolites with preventative or therapeutic effects that can reduce parasite load. However, the latter has been little investigated. Psittaciformes (parrots and cockatoos) are a good model to investigate these topics, as they are known to use biological control against ectoparasites and to feed on toxic food. We investigated the presence of avian malaria parasites (Plasmodium), intracellular haemosporidians (Haemoproteus, Leucocytozoon), unicellular flagellate protozoans (Trypanosoma) and microfilariae in 19 Psittaciformes species from a range of habitats in the Indo-Malayan, Australasian and Neotropical regions. We gathered additional data on hemoparasites in wild Psittaciformes from the literature. We considered factors that may control the presence of hemoparasites in the Psittaciformes, compiling information on diet, habitat, and climate. Furthermore, we investigated the role of diet in providing antiparasitic secondary metabolites that could be used as self-medication to reduce parasite load. Results: We found hemoparasites in only two of 19 species sampled. Among them, all species that consume at least one food item known for its secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, were free from hemoparasites. In contrast, the infected parrots do not consume food items with antimalarial or even general antiparasitic properties. We found that the two infected species in this study consumed omnivorous diets. When we combined our data with data from studies previously investigating blood parasites in wild parrots, the positive relationship between omnivorous diets and hemoparasite infestation was confirmed. Individuals from open habitats were less infected than those from forests. Conclusions: The consumption of food items known for their secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, as well as the higher proportion of infected species among omnivorous parrots, could explain the low prevalence of hemoparasites reported in many vertebrates

    Plasticity versus repeatability in seabird migratory behaviour

    Get PDF
    Pelagic seabird populations can use several discrete wintering areas, but it is unknown if individuals use the same wintering area year after year. This would have consequences for their population genetic structure and conservation. We here study the faithfulness of individuals to a moulting area within and among years in a small pelagic seabird, the Thin-billed prion, which moult their primary feathers during the early part of the non-breeding period. According to stable carbon isotope ratios (Ύ13C) of these feathers, 90% of Thin-billed prions moult in Antarctic and 10% in South American waters. Repeated samples from individuals in 2 or 3 years indicated that several birds changed between Antarctic and South American moulting areas or vice versa. However, individuals moulting in an area in one year were more likely to do so again. Four out of five adults maintained highly conserved Ύ13C over the extended moulting period. One bird, however, had systematic changes in Ύ13C indicating latitudinal movements between the two areas during moult. Thus, the present data show that this seabird species has a highly flexible migratory strategy, not only at the population level, but also at the individual level, enabling these seabirds to exploit a highly unpredictable environment

    Hemosporidian blood parasites in seabirds—a comparative genetic study of species from Antarctic to tropical habitats

    Get PDF
    Whereas some bird species are heavily affected by blood parasites in the wild, others reportedly are not. Seabirds, in particular, are often free from blood parasites, even in the presence of potential vectors. By means of polymerase chain reaction, we amplified a DNA fragment from the cytochrome b gene to detect parasites of the genera Plasmodium, Leucocytozoon, and Haemoproteus in 14 seabird species, ranging from Antarctica to the tropical Indian Ocean. We did not detect parasites in 11 of these species, including one Antarctic, four subantarctic, two temperate, and four tropical species. On the other hand, two subantarctic species, thin-billed prions Pachyptila belcheri and dolphin gulls Larus scoresbii, were found infected. One of 28 thin-billed prions had a Plasmodium infection whose DNA sequence was identical to lineage P22 of Plasmodium relictum, and one of 20 dolphin gulls was infected with a Haemoproteus lineage which appears phylogenetically clustered with parasites species isolated from passeriform birds such as Haemoproteus lanii, Haemoproteus magnus, Haemoproteus fringillae, Haemoproteus sylvae, Haemoproteus payevskyi, and Haemoproteus belopolskyi. In addition, we found a high parasite prevalence in a single tropical species, the Christmas Island frigatebird Fregata andrewsi, where 56% of sampled adults were infected with Haemoproteus. The latter formed a monophyletic group that includes a Haemoproteus line from Eastern Asian black-tailed gulls Larus crassirostris. Our results are in agreement with those showing that (a) seabirds are poor in hemosporidians and (b) latitude could be a determining factor to predict the presence of hemosporidians in birds. However, further studies should explore the relative importance of extrinsic and intrinsic factors on parasite prevalence, in particular using phylogenetically controlled comparative analyses, systematic sampling and screening of vectors, and within-species comparisons

    Rapid radiation of Southern Ocean shags in response to receding sea ice

    Get PDF
    Understanding how natural populations respond to climatic shifts is a fundamental goal of biological research in a fast-changing world. The Southern Ocean represents a fascinating system for assessing large-scale climate-driven biological change, as it contains extremely isolated island groups within a predominantly westerly, circumpolar wind and current system. Blue-eyed shags represent a paradoxical seabird radiation—a circumpolar distribution implies strong dispersal capacity yet their species-rich nature suggests local adaptation and isolation. Here we attempt to resolve this paradox in light of the history of repeated cycles of climate change in the Southern Ocean

    Independent evolution of intermediate bill widths in a seabird clade

    Get PDF
    16 pages, 5 figures, 5 tables, supplementary information https://doi.org/10.1007/s00438-021-01845-3.-- Availability of data and material: DNA sequences: GenBank accession numbers are provided in Table 1. All data are available in the manuscript or in the Supplementary information fileInterspecific introgression can occur between species that evolve rapidly within an adaptive radiation. Pachyptila petrels differ in bill size and are characterised by incomplete reproductive isolation, leading to interspecific gene flow. Salvin’s prion (Pachyptila salvini), whose bill width is intermediate between broad-billed (P. vittata) and Antarctic (P. desolata) prions, evolved through homoploid hybrid speciation. MacGillivray’s prion (P. macgillivrayi), known from a single population on St Paul (Indian Ocean), has a bill width intermediate between salvini and vittata and could also be the product of interspecies introgression or hybrid speciation. Recently, another prion population phenotypically similar to macgillivrayi was discovered on Gough (Atlantic Ocean), where it breeds 3 months later than vittata. The similarity in bill width between the medium-billed birds on Gough and macgillivrayi suggest that they could be closely related. In this study, we used genetic and morphological data to infer the phylogenetic position and evolutionary history of P. macgillivrayi and the Gough medium-billed prion relative other Pachyptila taxa, to determine whether species with medium bill widths evolved through common ancestry or convergence. We found that Gough medium-billed prions belong to the same evolutionary lineage as macgillivrayi, representing a new population of MacGillivray’s prion that originated through a colonisation event from St Paul. We show that macgillivrayi’s medium bill width evolved through divergence (genetic drift) and independently from that of salvini, which evolved through hybridisation (gene flow). This represents the independent convergence towards a similarly medium-billed phenotype. The newly discovered MacGillivray’s prion population on Gough is of utmost conservation relevance, as the relict macgillivrayi population in the Indian Ocean is very smallOpen Access funding enabled and organized by Projekt DEAL. PQ, JFM, TLC and LC were supported by the Deutsche Forschungsgemeinschaft (Germany), Heisenberg program (grant number DFG, Qu 148-5 to P.Q.). Logistical and financial support was obtained from the South African Department of Environmental Affairs, through the South African National Antarctic Programme. LDS was supported by a Rutherford Discovery Fellowship from the Royal Society of New ZealandWith the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe

    Biological Earth observation with animal sensors.

    Get PDF
    Space-based tracking technology using low-cost miniature tags is now delivering data on fine-scale animal movement at near-global scale. Linked with remotely sensed environmental data, this offers a biological lens on habitat integrity and connectivity for conservation and human health; a global network of animal sentinels of environmen-tal change
    • 

    corecore