171 research outputs found

    The Millennium Arecibo 21-CM Absorption Line Survey. II. Properties of the Warm and Cold Neutral Media

    Get PDF
    We use the Gaussian-fit results of Paper I to investigate the properties of interstellar HI in the Solar neighborhood. The Warm and Cold Neutral Media (WNM and CNM) are physically distinct components. The CNM spin temperature histogram peaks at about 40 K. About 60% of all HI is WNM. At z=0, we derive a volume filling fraction of about 0.50 for the WNM; this value is very rough. The upper-limit WNM temperatures determined from line width range upward from about 500 K; a minimum of about 48% of the WNM lies in the thermally unstable region 500 to 5000 K. The WNM is a prominent constituent of the interstellar medium and its properties depend on many factors, requiring global models that include all relevant energy sources, of which there are many. We use Principal Components Analysis, together with a form of least squares fitting that accounts for errors in both the independent and dependent parameters, to discuss the relationships among the four CNM Gaussian parameters. The spin temperature T_s and column density N(HI) are, approximately, the two most important eigenvectors; as such, they are sufficient, convenient, and physically meaningful primary parameters for describing CNM clouds. The Mach number of internal macroscopic motions for CNM clouds is typically 2.5, but there are wide variations. We discuss the historical tau-T_s relationship in some detail and show that it has little physical meaning. We discuss CNM morphology using the CNM pressure known from UV stellar absorption lines. Knowing the pressure allows us to show that CNM structures cannot be isotropic but instead are sheetlike, with length-to-thickness aspect ratios ranging up to about 280. We present large-scale maps of two regions where CNM lies in very large ``blobby sheets''.Comment: Revised submission to Ap.J. Changes include: (1) correction of turbulent Mach number in equation 16 and figure 12; the new typical value is 1.3 versus the old, incorrect value 2.5. (2) smaller typeface for the astro-ph version to conserve paper. 60 pages, 16 figure

    A Fractal Analysis of the HI Emission from the Large Magellanic Cloud

    Full text link
    A composite map of HI in the LMC using the ATCA interferometer and the Parkes multibeam telescope was analyzed in several ways in an attempt to characterize the structure of the neutral gas and to find an origin for it. Fourier transform power spectra in 1D, 2D, and in the azimuthal direction were found to be approximate power laws over 2 decades in length. Delta-variance methods also showed the same power-law structure. Detailed models of these data were made using line-of-sight integrals over fractals that are analogous to those generated by simulations of turbulence with and without phase transitions. The results suggested a way to measure directly for the first time the line-of-sight thickness of the cool component of the HI disk of a nearly face-on galaxy. The signature of this thickness was found to be present in all of the measured power spectra. The character of the HI structure in the LMC was also viewed by comparing positive and negative images of the integrated emission. The geometric structure of the high-emission regions was found to be filamentary, whereas the geometric structure of the low-emission (intercloud) regions was found to be patchy and round. This result suggests that compressive events formed the high-emission regions, and expansion events, whether from explosions or turbulence, formed the low-emission regions. The character of the structure was also investigated as a function of scale using unsharp masks. All of these results suggest that most of the ISM in the LMC is fractal, presumably the result of pervasive turbulence, self-gravity, and self-similar stirring.Comment: 30 pages, 21 figures, scheduled for ApJ Vol 548n1, Feb 10, 200

    ROSAT X-ray sources in the field of the LMC I.Total LMC gas from the background AGN spectral fits

    Full text link
    We analyzed a sample of 26 background X-ray sources in a ~60 square degree field of the Large Magellanic Cloud observed with the ROSAT PSPC. The sample has been selected from previously classified and optically identified X-ray sources. In addition pointlike and spectrally hard sources with at least 100 to 200 observed counts have been used for the analysis. We performed X-ray spectral fitting and derived total hydrogen absorbing column densities due to LMC gas in the range 10^20 - 2. 10^21 cm^-2. We compared these columns with the HI columns derived from a 21-cm Parkes survey of the LMC. For 7 optically identified sources we find, within the uncertainties derived from the X-ray spectral fit, agreement for both columns. For further 19 sources we constrain the LMC columns from the X-ray spectral fit assuming that the powerlaw photon index is that of AGN type spectra. We derive for 20 sources gas columns which are within the uncertainties in agreement with the HI columns. We derive for two background sources (RX J0536.9-6913 and RX J0547.0-7040) hydrogen absorbing column densities due to LMC gas, which are in excess to the HI columns. These sources - located in regions of large (~3. 10^21 cm^-2) LMC HI column densities - could be seen through additional gas which may be warm and diffuse, cold or molecular. For 10 sources we derive upper limits for the gas columns additional to HI and constrain the molecular mass fraction to <(30-140)%.Comment: Accepted by A&

    Cool Gas in the Magellanic Stream

    Full text link
    We present the first direct detection of cold atomic gas in the Magellanic Stream, through 21 cm line absorption toward a background radio source, J0119 - 6809, using the Australia Telescope Compact Array. Two absorption components were identified at heliocentric velocities 218.6 km/s and 227.0 km/s, with optical depths of tau ~ 0.02. The corresponding H I emission region has a column density in excess of 2 x 10^20 cm^{-2}. The inferred spin temperature of the emitting gas is ~70 K. We failed to find cool gas in observations of three other radio continuum sources. Although we have definitively detected cool gas in the Stream, its spin temperature is higher than similar components in the LMC, SMC and Bridge, and its contribution to the total H I density is probably lower. No corresponding 12CO(J = 1 -> 0) or dust appears to be associated with the cool gas, suggesting that the cloud is not forming stars

    Magnetic Field Structure of the Large Magellanic Cloud from Faraday Rotation Measures of Diffuse Polarized Emission

    Get PDF
    We present a study of the magnetic field of the Large Magellanic Cloud (LMC), carried out using diffuse polarized synchrotron emission data at 1.4 GHz acquired at the Parkes Radio Telescope and the Australia Telescope Compact Array. The observed diffuse polarized emission is likely to originate above the LMC disk on the near side of the galaxy. Consistent negative rotation measures (RMs) derived from the diffuse emission indicate that the line-of-sight magnetic field in the LMC's near-side halo is directed coherently away from us. In combination with RMs of extragalactic sources that lie behind the galaxy, we show that the LMC's large scale magnetic field is likely to be of quadrupolar geometry, consistent with the prediction of dynamo theory. On smaller scales, we identify two brightly polarized filaments southeast of the LMC, associated with neutral hydrogen arms. The filaments' magnetic field potentially aligns with the direction towards the Small Magellanic Cloud. We suggest that tidal interactions between the Small and the Large Magellanic Clouds in the past 10^9 years is likely to have shaped the magnetic field in these filaments.Comment: 42 pages, 22 figures, 2 tables. Accepted for publication in ApJ. Electronic version of Table 2 is available via email from the first autho

    Wavefront sensing and control in space-based coronagraph instruments using Zernike’s phase-contrast method

    Get PDF
    Future space telescopes with coronagraph instruments will use a wavefront sensor (WFS) to measure and correct for phase errors and stabilize the stellar intensity in high-contrast images. The HabEx and LUVOIR mission concepts baseline a Zernike wavefront sensor (ZWFS), which uses Zernike’s phase contrast method to convert phase in the pupil into intensity at the WFS detector. In preparation for these potential future missions, we experimentally demonstrate a ZWFS in a coronagraph instrument on the Decadal Survey Testbed in the High Contrast Imaging Testbed facility at NASA’s Jet Propulsion Laboratory. We validate that the ZWFS can measure low- and mid-spatial frequency aberrations up to the control limit of the deformable mirror (DM), with surface height sensitivity as small as 1 pm, using a configuration similar to the HabEx and LUVOIR concepts. Furthermore, we demonstrate closed-loop control, resolving an individual DM actuator, with residuals consistent with theoretical models. In addition, we predict the expected performance of a ZWFS on future space telescopes using natural starlight from a variety of spectral types. The most challenging scenarios require ∼1  h of integration time to achieve picometer sensitivity. This timescale may be drastically reduced by using internal or external laser sources for sensing purposes. The experimental results and theoretical predictions presented here advance the WFS technology in the context of the next generation of space telescopes with coronagraph instruments

    Star Formation from Galaxies to Globules

    Get PDF
    The empirical laws of star formation suggest that galactic-scale gravity is involved, but they do not identify the actual triggering mechanisms for clusters in the final stages. Many other triggering processes satisfy the empirical laws too, including turbulence compression and expanding shell collapse. The self-similar nature of the gas and associated young stars suggests that turbulence is more directly involved, but the small scale morphology of gas around most embedded clusters does not look like a random turbulent flow. Most clusters look triggered by other nearby stars. Such a prominent local influence makes it difficult to understand the universality of the Kennicutt and Schmidt laws on galactic scales. A unified view of multi-scale star formation avoids most of these problems. Ambient self-gravity produces spiral arms and drives much of the turbulence that leads to self-similar structures, while localized energy input from existing clusters and field supernovae triggers new clusters in pre-existing clouds. The hierarchical structure in the gas made by turbulence ensures that the triggering time scales with size, giving the Schmidt law over a wide range of scales and the size-duration correlation for young star fields. The efficiency of star formation is determined by the fraction of the gas above a critical density of around 10^5 m(H2)/cc. Star formation is saturated to its largest possible value given the fractal nature of the interstellar medium.Comment: accepted for ApJ, 42 pages, Dannie Heineman prize lecture, January 200
    corecore