10 research outputs found

    The genetics of obesity-related traits and lipoproteins in Filipino women

    Get PDF
    The underlying genetic component of risk factors for cardiovascular disease (CVD) is not well understood. Recently, advances in high-throughput genotyping, single nucleotide polymorphism (SNP) discovery, and the development of databases such as the International Haplotype Map (HapMap) have provided scientists with tools to complete a genetic analysis of complex diseases such as CVD. Research presented in this dissertation aims to further understand the genetics of obesity-related traits and lipoprotein levels and identify variants that are associated with these traits in a cohort of adult women from metro Cebu, Philippines, who participated in the Cebu Longitudinal Health and Nutrition Survey (CLHNS). Initially I assess the transferability of tag SNPs chosen from HapMap panels to the CLHNS. I show that the Asian HapMap samples are an effective resource for studies in the CLHNS. I then investigate the association between 19 candidate variants in 10 genes previously reported to be associated with obesity-related traits with similar traits in the CLHNS. We observe evidence for association with the A-allele of rs9939609 of FTO and ADRB3 Trp64-allele with obesity traits. I perform a genome-wide association study for HDL-C, triglycerides, LDL-C, and total cholesterol. Among ~2 million SNPs analyzed, we observe evidence of association for 11 loci previously described. We observe suggestive evidence of trait association (P <10-5) for Tankyrase (TNKS) with LDL-C and Collecting-12 (COLEC12) with total cholesterol. In a separate study, I investigate an HDL-C associated locus, GALNT2, to identify functional variants responsible for the association signal. I identify variants in moderate linkage disequilibrium (r2 >.5) with HDL-C associated SNPs, clone regions that have suggestive regulatory function into a luciferase reporter vector, and measure transcriptional activity in HepG2 cells. The results suggest that a 21 bp deletion, rs4849913, and/or rs2144300 may act to increase the transcriptional activity of GALNT2 or an unknown novel intronic transcript to increase HDL-C. These studies present the first genetic study of CVD traits in the CLHNS and a molecular study of a gene that is associated with HDL-C. Together this research provides a solid foundation for one day identifying the molecular mechanism underlying complex diseases

    Genome-Wide Association Study of Anthropometric Traits and Evidence of Interactions With Age and Study Year in Filipino Women

    Get PDF
    Increased values of multiple adiposity-related anthropometric traits are important risk factors for many common complex diseases. We performed a genome-wide association (GWA) study for four quantitative traits related to body size and adiposity (body mass index [BMI], weight, waist circumference, and height) in a cohort of 1,792 adult Filipino women from the Cebu Longitudinal Health and Nutrition Survey. This is the first GWA study of anthropometric traits in Filipinos, a population experiencing a rapid transition into a more obesogenic environment. In addition to identifying suggestive evidence of additional SNP association signals (P < 10−5), we replicated (P < 0.05, same direction of additive effect) associations previously reported in European populations of both BMI and weight with MC4R and FTO, of BMI with BDNF, and of height with EFEMP1, ZBTB38, and NPPC, but none with waist circumference. We also replicated loci reported in Japanese or Korean populations as associated with BMI (OTOL1) and height (HIST1H1PS2, C14orf145, GPC5). A difference in local linkage disequilibrium between European and Asian populations suggests a narrowed association region for BDNF, while still including a proposed functional non-synonymous amino acid substitution variant (rs6265, Val66Met). Finally, we observed significant evidence (P < 0.0042) for age-by-genotype interactions influencing BMI for rs17782313 (MC4R) and rs9939609 (FTO), and for a study year-by-genotype interaction for rs4923461 (BDNF). Our results show that several genetic risk factors are associated with anthropometric traits in Filipinos and provide further insight into the effects of BDNF, FTO, and MC4R on BMI

    Genetic association with lipids in Filipinos: waist circumference modifies an APOA5 effect on triglyceride levels

    Get PDF
    Blood levels of lipoprotein cholesterol and triglycerides (TGs) are highly heritable and are major risk factors for cardiovascular disease (CVD). Approximately 100 lipid-associated loci have been identified in populations of European ancestry. We performed a genome-wide association study of lipid traits in 1,782 Filipino women from the Cebu Longitudinal Health and Nutrition Survey, and tested for evidence of interactions with waist circumference. We conducted additional association and interaction analyses in 1,719 of their young adult offspring. Genome-wide significant associations (P < 5 × 10−8) were detected at APOE for low density lipoprotein cholesterol and total cholesterol, and at APOA5 for TGs. Suggestive associations (P < 10−6) were detected at GCKR for TGs, and at CETP and TOM1 for high density lipoprotein cholesterol. Our data also supported the existence of allelic heterogeneity at APOA5, CETP, LIPC, and APOE. The secondary signal (Gly185Cys) at APOA5 exhibited a single nucleotide polymorphism (SNP)-by-waist circumference interaction affecting TGs (Pinteraction = 1.6 × 10−4), manifested by stronger SNP effects as waist circumference increased. These findings provide the first evidence that central obesity may accentuate the effect of the TG-increasing allele of the APOA5 signal, emphasizing that CVD risk could be reduced by central obesity control

    Multiple Hepatic Regulatory Variants at the GALNT2 GWAS Locus Associated with High-Density Lipoprotein Cholesterol

    Get PDF
    Genome-wide association studies (GWASs) have identified more than 150 loci associated with blood lipid and cholesterol levels; however, the functional and molecular mechanisms for many associations are unknown. We examined the functional regulatory effects of candidate variants at the GALNT2 locus associated with high-density lipoprotein cholesterol (HDL-C). Fine-mapping and conditional analyses in the METSIM study identified a single locus harboring 25 noncoding variants (r2 > 0.7 with the lead GWAS variants) strongly associated with total cholesterol in medium-sized HDL (e.g., rs17315646, p = 3.5 × 10−12). We used luciferase reporter assays in HepG2 cells to test all 25 variants for allelic differences in regulatory enhancer activity. rs2281721 showed allelic differences in transcriptional activity (75-fold [T] versus 27-fold [C] more than the empty-vector control), as did a separate 780-bp segment containing rs4846913, rs2144300, and rs6143660 (49-fold [AT– haplotype] versus 16-fold [CC+ haplotype] more). Using electrophoretic mobility shift assays, we observed differential CEBPB binding to rs4846913, and we confirmed this binding in a native chromatin context by performing chromatin-immunoprecipitation (ChIP) assays in HepG2 and Huh-7 cell lines of differing genotypes. Additionally, sequence reads in HepG2 DNase-I-hypersensitivity and CEBPB ChIP-seq signals spanning rs4846913 showed significant allelic imbalance. Allelic-expression-imbalance assays performed with RNA from primary human hepatocyte samples and expression-quantitative-trait-locus (eQTL) data in human subcutaneous adipose tissue samples confirmed that alleles associated with increased HDL-C are associated with a modest increase in GALNT2 expression. Together, these data suggest that at least rs4846913 and rs2281721 play key roles in influencing GALNT2 expression at this HDL-C locus

    Genome-wide association study of homocysteine levels in Filipinos provides evidence for CPS1 in women and a stronger MTHFR effect in young adults

    Get PDF
    Plasma homocysteine (Hcy) level is associated with cardiovascular disease and may play an etiologic role in vascular damage, a precursor for atherosclerosis. We performed a genome-wide association study for Hcy in 1786 unrelated Filipino women from the Cebu Longitudinal Health and Nutrition Survey (CLHNS). The most strongly associated single-nucleotide polymorphism (SNP) (rs7422339, P = 4.7 × 10−13) encodes Thr1405Asn in the gene CPS1 and explained 3.0% of variation in the Hcy level. The widely studied MTHFR C677T SNP (rs1801133) was also highly significant (P = 8.7 × 10−10) and explained 1.6% of the trait variation. We also genotyped these two SNPs in 1679 CLHNS young adult offspring. The MTHFR C677T SNP was strongly associated with Hcy (P = 1.9 × 10−26) and explained ∼5.1% of the variation in the offspring. In contrast, the CPS1 variant was significant only in females (P = 0.11 in all; P = 0.0087 in females). Combined analysis of all samples confirmed that the MTHFR variant was more strongly associated with Hcy in the offspring (interaction P = 1.2 × 10−5). Furthermore, although there was evidence for a positive synergistic effect between the CPS1 and MTHFR SNPs in the offspring (interaction P = 0.0046), there was no significant evidence for an interaction in the mothers (P = 0.55). These data confirm a recent finding that CPS1 is a locus influencing Hcy levels in women and suggest that genetic effects on Hcy may differ across developmental stages

    Multiple Hepatic Regulatory Variants at the GALNT2 GWAS Locus Associated with High-Density Lipoprotein Cholesterol

    No full text
    Genome-wide association studies (GWASs) have identified more than 150 loci associated with blood lipid and cholesterol levels; however, the functional and molecular mechanisms for many associations are unknown. We examined the functional regulatory effects of candidate variants at the GALNT2 locus associated with high-density lipoprotein cholesterol (HDL-C). Fine-mapping and conditional analyses in the METSIM study identified a single locus harboring 25 noncoding variants (r(2) > 0.7 with the lead GWAS variants) strongly associated with total cholesterol in medium-sized HDL (e.g., rs17315646, p = 3.5 × 10(−12)). We used luciferase reporter assays in HepG2 cells to test all 25 variants for allelic differences in regulatory enhancer activity. rs2281721 showed allelic differences in transcriptional activity (75-fold [T] versus 27-fold [C] more than the empty-vector control), as did a separate 780-bp segment containing rs4846913, rs2144300, and rs6143660 (49-fold [AT(–) haplotype] versus 16-fold [CC(+) haplotype] more). Using electrophoretic mobility shift assays, we observed differential CEBPB binding to rs4846913, and we confirmed this binding in a native chromatin context by performing chromatin-immunoprecipitation (ChIP) assays in HepG2 and Huh-7 cell lines of differing genotypes. Additionally, sequence reads in HepG2 DNase-I-hypersensitivity and CEBPB ChIP-seq signals spanning rs4846913 showed significant allelic imbalance. Allelic-expression-imbalance assays performed with RNA from primary human hepatocyte samples and expression-quantitative-trait-locus (eQTL) data in human subcutaneous adipose tissue samples confirmed that alleles associated with increased HDL-C are associated with a modest increase in GALNT2 expression. Together, these data suggest that at least rs4846913 and rs2281721 play key roles in influencing GALNT2 expression at this HDL-C locus

    Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes.

    No full text
    Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and approximately 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P = 5.0 x 10(-14)), CDC123-CAMK1D (P = 1.2 x 10(-10)), TSPAN8-LGR5 (P = 1.1 x 10(-9)), THADA (P = 1.1 x 10(-9)), ADAMTS9 (P = 1.2 x 10(-8)) and NOTCH2 (P = 4.1 x 10(-8)) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.

    Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes.

    No full text
    Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and approximately 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P = 5.0 x 10(-14)), CDC123-CAMK1D (P = 1.2 x 10(-10)), TSPAN8-LGR5 (P = 1.1 x 10(-9)), THADA (P = 1.1 x 10(-9)), ADAMTS9 (P = 1.2 x 10(-8)) and NOTCH2 (P = 4.1 x 10(-8)) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D
    corecore