79 research outputs found
Recommended from our members
Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis
Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long thought to be the primary causative agent, but genetic contributions have been of interest since the discovery that rare PRSS1, CFTR, and SPINK1 variants were associated with pancreatitis risk. We now report two significant genome-wide associations identified and replicated at PRSS1-PRSS2 (1×10-12) and x-linked CLDN2 (p < 1×10-21) through a two-stage genome-wide study (Stage 1, 676 cases and 4507 controls; Stage 2, 910 cases and 4170 controls). The PRSS1 variant affects susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or hemizygous male) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol consumption to amplify risk. These results could partially explain the high frequency of alcohol-related pancreatitis in men – male hemizygous frequency is 0.26, female homozygote is 0.07
Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease
We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
A novel Alzheimer disease locus located near the gene encoding tau protein
APOE ε4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer’s Project (IGAP) Consortium in APOE ε4+ (10,352 cases and 9,207 controls) and APOE ε4- (7,184 cases and 26,968 controls) subgroups as well as in the total sample testing for interaction between a SNP and APOE ε4 status. Suggestive associations (P<1x10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4,203 subjects (APOE ε4+: 1,250 cases and 536 controls; APOE ε4-: 718 cases and 1,699 controls). Among APOE ε4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 datasets (best SNP, rs2732703, P=5·8x10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100 kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ε4+ subjects (CR1 and CLU) or APOE ε4- subjects (MS4A6A/MS4A4A/ MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significansignificantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6x10-7) is noteworthy because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P<1.3x10-8), frontal cortex (P<1.3x10-9), and temporal cortex (P<1.2x10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2x10-6) and temporal cortex (P=2.6x10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE ε4 compared to persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted
Genetically elevated high-density lipoprotein cholesterol through the cholesteryl ester transfer protein gene does not associate with risk of Alzheimer's disease
Introduction: There is conflicting evidence whether high-density lipoprotein cholesterol (HDL-C) is a risk factor for Alzheimer's disease (AD) and dementia. Genetic variation in the cholesteryl ester transfer protein (CETP) locus is associated with altered HDL-C. We aimed to assess AD risk by genetically predicted HDL-C.
Methods: Ten single nucleotide polymorphisms within the CETP locus predicting HDL-C were applied to the International Genomics of Alzheimer's Project (IGAP) exome chip stage 1 results in up 16,097 late onset AD cases and 18,077 cognitively normal elderly controls. We performed instrumental variables analysis using inverse variance weighting, weighted median, and MR-Egger.
Results: Based on 10 single nucleotide polymorphisms distinctly predicting HDL-C in the CETP locus, we found that HDL-C was not associated with risk of AD (P > .7).
Discussion: Our study does not support the role of HDL-C on risk of AD through HDL-C altered by CETP. This study does not rule out other mechanisms by which HDL-C affects risk of AD
In Vitro Clonal Priming Data Suggests Mechanism for Lower Initial Vaccine Dose Yielding Increased Immunity in Astra-Zeneca Vaccine Trial
The Distribution of Adenosine Deaminase Among Lymphocyte Populations in the Rat
Abstract
Adenosine deaminase (ADA) activity was determined in young adult rat lymphocyte populations. The ADA-specific activity (per 108 cells and per milligram protein) was 3- to 10-fold higher in thymocytes than in lymphocytes from thoracic duct, lymph node, spleen, and bone marrow. The high ADA activity in thymocytes appeared to be preferentially associated with cortical thymocytes. Enrichment or depletion of cortical thymocytes by density gradient centrifugation, cortisone treatment, or selective lysis with anti-Thy-1 plus complement resulted in parallel increases or decreases in ADA levels. These results also suggested that medullary thymocytes have ADA levels similar to those of peripheral lymphocytes. “Immature” cortical thymocytes and thymocyte progenitors appeared to have low ADA activity; low enzyme levels were found in fetal thymus at 16 days of embryonic life, in the early phases of thymus regeneration, and in a “null” cell population isolated from bone marrow. This study demonstrates that ADA activity varies markedly during T lymphocyte differentiation and suggests that fundamental differences in nucleotide metabolism may exist in T cells at different stages of development.</jats:p
Crotamine as a vehicle for non-viral gene delivery for Pompe disease
AbstractGenetic deficiency of lysosomal acid alpha glucosidase or acid maltase (GAA) results in Pompe disease (PD), encompassing at least five clinical subtypes of varying severity. The current approved enzyme replacement therapy (ERT) for PD is via IV infusion every 2 weeks of a recombinant human GAA (rhGAA) secreted by Chinese hamster ovary (CHO) cells (alglucosidase alfa/Myozyme, Sanofi/Genzyme). Although alglucosidase alfa has proven to be efficient in rescuing cardiac abnormalities and extending the life span of the infantile form, the response in skeletal muscle is variable. ERT usually begins when the patients are symptomatic and secondary problems are already present which are compounded by low alglucosidase alfa uptake, transient nature (every 2 weeks with a rapid return to defect levels), variable glycogen reduction, autophagic accumulation, immune response and high cost. A consensus at a recent US Acid Maltase Deficiency (AMD) conference suggested that a multi-pronged approach including gene therapy, diet, exercise, etc. must be evaluated for a successful treatment of PD. Compared to replication defective viruses, non-viral gene transfer offers fewer safety concerns and, if recent studies are validated, has a wider range of cells. In order for gene therapy (GT) to succeed, the gene of interest must be delivered into the affected cell and expressed to overcome the inherited deficiency. Cell penetrating peptides (CPPs) enter eukaryotic cells through an energy-independent mechanism and efficiently carry biologically active and therapeutic molecules into cells and localize in the cytoplasm or nucleus. CPPs are usually covalently linked to the cargo, including peptides and DNA. Crotamine (Cro) from the South American rattlesnake-Crotalus durrissus terrificus venom, can bind electrostatically to plasmid DNA to deliver into cells, including muscle. We have assembled a bacterial expression vector for Cro and purified the recombinant Cro (rCro). Transient transfection in AMD fibroblasts and ex vivo in whole blood from an adult Pompe patient with rCro complexed with the pcDNA3 x hGAA cDNA demonstrated increased GAA activity. In GAA knockout (KO) mice receiving a single injection of rCro complexed to pcDNA3 x hGAA cDNA intraperitoneally (IP), we found increased GAA activity in tissues after 48 hr. After 8 treatments-IP over 55 days, we found increased vertical hang-time activity, reduced glycogen deposition, increased GAA activity/hGAA plasmid in tissues and minimal immune-reaction to rCro. A subsequent study of 5 administrations every 2 to 3 weeks showed reverse of the clinical phenotypes by running wheel activity, Rotarod, grip-strength meter, open field mobility and T-maze. Tissue culture experiments in PD fibroblast, lymphoid and skeletal muscle cell lines showed increased GAA activity after rCro transient gene delivery.</jats:p
Leprosy as a model to understand cancer immunosurveillance and T cell anergy
Abstract
Leprosy is a disease caused by Mycobacterium leprae that presents on a spectrum of both clinical manifestations and T cell response. On one end of this spectrum, tuberculoid leprosy is a well-controlled disease, characterized by a cell-mediated immunity and immunosurveillance. On the opposite end of the spectrum, lepromatous leprosy is characterized by M. leprae proliferation and T cell anergy. Similar to progressive tumor cells, M. leprae escapes immunosurveillance in more severe forms of leprosy. The mechanisms by which M. leprae is able to evade the host immune response involve many, including the alterations of lipid droplets, microRNA, and Schwann cells, and involve the regulation of immune regulators, such as the negative checkpoint regulators CTLA-4, programmed death 1, and V-domain Ig suppressor of T cell activation—important targets in today’s cancer immunotherapies. The means by which tumor cells become able to escape immunosurveillance through negative checkpoint regulators are evidenced by the successes of treatments, such as nivolumab and ipilimumab. Many parallels can be drawn between the immune responses seen in leprosy and cancer. Therefore, the understanding of how M. leprae encourages immune escape during proliferative disease states has potential to add to our understanding of cancer immunotherapy.</jats:p
- …
