82 research outputs found
A CFD-based virtual test-rig for rotating heat exchangers
Rotating heat exchangers are used in steel industry, air conditioning and thermal power plants to pre-heat air used in steam generators or for waste heat recovery. Here we focus on a rotating heat exchanger on a so-called Ljungström arrangement operated in thermal power plants to pre-heat the air fed to the steam generators. In these devices the heat exchange between two fluids is achieved through a rotating matrix that gets in contact alternatively with the two fluid streams and acts as a thermal accumulator. To increase the heat capacity and the overall exchange surface, the rotating matrix is filled by a series of folded metal sheets. In the paper we de-scribe a methodology to account for the effects of the Ljungström in a virtual test-rig implemented in a Computational Fluid Dynamics environment. To this aim, a numerical model based on the work of Molinari and Cantiano was derived and implemented in the OpenFOAM library. RANS numerical results were compared with those of a mono-dimensional tool used by ENEL to design Ljungström heat exchangers and validated against available measurements in a real configuration of a thermal power plant
The Spatial Clustering of ROSAT All-Sky Survey AGNs II. Halo Occupation Distribution Modeling of the Cross Correlation Function
This is the second paper of a series that reports on our investigation of the
clustering properties of AGNs in the ROSAT All-Sky Survey (RASS) through
cross-correlation functions (CCFs) with Sloan Digital Sky Survey (SDSS)
galaxies. In this paper, we apply the Halo Occupation Distribution (HOD) model
to the CCFs between the RASS Broad-line AGNs with SDSS Luminous Red Galaxies
(LRGs) in the redshift range 0.16<z<0.36 that was calculated in paper I. In our
HOD modeling approach, we use the known HOD of LRGs and constrain the HOD of
the AGNs by a model fit to the CCF. For the first time, we are able to go
beyond quoting merely a `typical' AGN host halo mass, M_h, and model the full
distribution function of AGN host dark matter halos. In addition, we are able
to determine the large-scale bias and the mean M_h more accurately. We explore
the behavior of three simple HOD models. Our first model (Model A) is a
truncated power-law HOD model in which all AGNs are satellites. With this
model, we find an upper limit to the slope (\alpha) of the AGN HOD that is far
below unity. The other two models have a central component, which has a step
function form, where the HOD is constant above a minimum mass, without (Model
B) or with (Model C) an upper mass cutoff, in addition to the truncated
power-law satellite component, similar to the HOD that is found for galaxies.
In these two models we find the upper limits of \alpha < 0.95 and \alpha < 0.84
for Model B and C respectively. Our analysis suggests that the satellite AGN
occupation increases slower than, or may even decrease with, M_h, in contrast
to the satellite's HODs of luminosity-threshold samples of galaxies, which, in
contrast, grow approximately as \propto M_h^\alpha with \alpha\approx 1. These
results are consistent with observations that the AGN fraction in groups and
clusters decreases with richness.Comment: 15 pages, 9 figures. ApJ in pres
Enhanced dihydropyridine receptor calcium channel activity restores muscle strength in JP45/CASQ1 double knockout mice
Muscle strength declines with age in part due to a decline of Ca(2+) release from sarcoplasmic reticulum calcium stores. Skeletal muscle dihydropyridine receptors (Ca(v)1.1) initiate muscle contraction by activating ryanodine receptors in the sarcoplasmic reticulum. Ca(v)1.1 channel activity is enhanced by a retrograde stimulatory signal delivered by the ryanodine receptor. JP45 is a membrane protein interacting with Ca(v)1.1 and the sarcoplasmic reticulum Ca(2+) storage protein calsequestrin (CASQ1). Here we show that JP45 and CASQ1 strengthen skeletal muscle contraction by modulating Ca(v)1.1 channel activity. Using muscle fibres from JP45 and CASQ1 double knockout mice, we demonstrate that Ca(2+) transients evoked by tetanic stimulation are the result of massive Ca(2+) influx due to enhanced Ca(v)1.1 channel activity, which restores muscle strength in JP45/CASQ1 double knockout mice. We envision that JP45 and CASQ1 may be candidate targets for the development of new therapeutic strategies against decay of skeletal muscle strength caused by a decrease in sarcoplasmic reticulum Ca(2+) content
Association between Food Intake, Clinical and Metabolic Markers and DNA Damage in Older Subjects
Abstract The use of DNA damage as marker of oxidative stress, metabolic dysfunction and age-related diseases is debated. The present study aimed at assessing the level of DNA damage (evaluated as DNA strand-breaks, endogenous and oxidatively-induced DNA damage) in a group of older subjects with intestinal permeability enrolled within the MaPLE (Gut and Blood Microbiomics for Studying the Effect of a Polyphenol-Rich Dietary Pattern on Intestinal Permeability in the Elderly) intervention trial, to evaluate its association with clinical, metabolic and dietary markers. DNA damage in peripheral blood mononuclear cells was assessed by the comet assay in 49 older subjects participating in the study. Clinical and metabolic markers, markers of inflammation, vascular function and intestinal permeability were determined in serum. Food intake was estimated by weighted food diaries. On the whole, a trend towards higher levels of DNA damage was observed in men compared to women (p = 0.071). A positive association between DNA damage and clinical/metabolic markers (e.g., uric acid, lipid profile) and an inverse association with dietary markers (e.g., vitamin C, E, B6, folates) were found and differed based on sex. By considering the importance of DNA stability during aging, the results obtained on sex differences and the potential role of dietary and metabolic factors on DNA damage underline the need for further investigations in a larger group of older adults to confirm the associations found and to promote preventive strategies
Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review
Abstract There is an increasing interest in investigating dietary strategies able to modulate the gut microbial ecosystem which, in turn, may play a key role in human health. Dietary fibers (DFs) are widely recognized as molecules with prebiotic effects. The main objective of this systematic review was to: (i) analyze the results available on the impact of DF intervention on short chain fatty acids (SCFAs) production; (ii) evaluate the interplay between the type of DF intervention, the gut microbiota composition and its metabolic activities, and any other health associated outcome evaluated in the host. To this aim, initially, a comprehensive database of literature on human intervention studies assessing the effect of confirmed and candidate prebiotics on the microbial ecosystem was developed. Subsequently, studies performed on DFs and analyzing at least the impact on SCFA levels were extracted from the database. A total of 44 studies from 42 manuscripts were selected for the analysis. Among the different types of fiber, inulin was the DF investigated the most (n = 11). Regarding the results obtained on the ability of fiber to modulate total SCFAs, seven studies reported a significant increase, while no significant changes were reported in five studies, depending on the analytical methodology used. A total of 26 studies did not show significant differences in individual SCFAs, while the others reported significant differences for one or more SCFAs. The effect of DF interventions on the SCFA profile seemed to be strictly dependent on the dose and the type and structure of DFs. Overall, these results underline that, although affecting microbiota composition and derived metabolites, DFs do not produce univocal significant increase in SCFA levels in apparently healthy adults. In this regard, several factors (i.e., related to the study protocols and analytical methods) have been identified that could have affected the results obtained in the studies evaluated. Future studies are needed to better elucidate the relationship between DFs and gut microbiota in terms of SCFA production and impact on health-related marker
Does the Mediterranean Diet Have Any Effect on Lipid Profile, Central Obesity and Liver Enzymes in Non-Alcoholic Fatty Liver Disease (NAFLD) Subjects? A Systematic Review and Meta-Analysis of Randomized Control Trials
The effectiveness of the Mediterranean diet (MD) in non-alcoholic fatty liver disease (NAFLD) subjects has been evaluated in several randomized controlled trials (RCTs). This systematic review and meta-analysis aimed to evaluate the overall effects of MD intervention in a cohort of NAFLD patients targeting specific markers such as central obesity, lipid profile, liver enzymes and fibrosis, and intrahepatic fat (IHF). Google Scholar, PubMed, and Scopus were explored to collect relevant studies from the last 10 years. RCTs with NAFLD subjects were included in this systematic review with a mean intervention duration from 6 weeks to 1 year, and different intervention strategies, mainly including energy restriction MD (normal or low glycaemic index), low-fat MD with increased monounsaturated and polyunsaturated fatty acids, and increased exercise expenditure. The outcomes measured in this meta-analysis were gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), total cholesterol (TC), waist circumference (WC), and liver fibrosis. Ten randomized controlled trials, which involved a total of 737 adults with NAFLD, were included. According to the results, the MD seems to decrease the liver stiffness (kPa) by –0.42 (CI95% –0.92, 0.09) (p = 0.10) and significantly reduce the TC by –0.46 mg/dl (CI95% –0.55, −0.38) (p = 0.001), while no significant findings were documented for liver enzymes and WC among patients with NAFLD. In conclusion, the MD might reduce indirect and direct outcomes linked with NAFLD severity, such as TC, liver fibrosis, and WC, although it is important to consider the variations across trials. Further RCTs are necessary to corroborate the findings obtained and provide further evidence on the role of the MD in the modulation of other disorders related to NAFLD.The authors acknowledge the support of the APC central fund of the University of Milano.Scopu
Effect of Coffee and Cocoa-Based Confectionery Containing Coffee on Markers of DNA Damage and Lipid Peroxidation Products: Results from a Human Intervention Study
The effect of coffee and cocoa on oxidative damage to macromolecules has been investigated in several studies, often with controversial results. This study aimed to investigate the effect of one-month consumption of different doses of coffee or cocoa-based products containing coffee on markers of DNA damage and lipid peroxidation in young healthy volunteers. Twenty-one volunteers were randomly assigned into a three-arm, crossover, randomized trial. Subjects were assigned to consume one of the three following treatments: one cup of espresso coffee/day (1C), three cups of espresso coffee/day (3C), and one cup of espresso coffee plus two cocoa-based products containing coffee (PC) twice per day for 1 month. At the end of each treatment, blood samples were collected for the analysis of endogenous and H(2)O(2)-induced DNA damage and DNA oxidation catabolites, while urines were used for the analysis of oxylipins. On the whole, four DNA catabolites (cyclic guanosine monophosphate (cGMP), 8-OH-2′-deoxy-guanosine, 8-OH-guanine, and 8-NO2-cGMP) were detected in plasma samples following the one-month intervention. No significant modulation of DNA and lipid damage markers was documented among groups, apart from an effect of time for DNA strand breaks and some markers of lipid peroxidation. In conclusion, the consumption of coffee and cocoa-based confectionery containing coffee was apparently not able to affect oxidative stress markers. More studies are encouraged to better explain the findings obtained and to understand the impact of different dosages of these products on specific target groups
Effect of Coffee and Cocoa-Based Confectionery Containing Coffee on Markers of DNA Damage and Lipid Peroxidation Products: Results from a Human Intervention Study
The effect of coffee and cocoa on oxidative damage to macromolecules has been investigated in several studies, often with controversial results. This study aimed to investigate the effect of one-month consumption of different doses of coffee or cocoa-based products containing coffee on markers of DNA damage and lipid peroxidation in young healthy volunteers. Twenty-one volunteers were randomly assigned into a three-arm, crossover, randomized trial. Subjects were assigned to consume one of the three following treatments: one cup of espresso coffee/day (1C), three cups of espresso coffee/day (3C), and one cup of espresso coffee plus two cocoa-based products containing coffee (PC) twice per day for 1 month. At the end of each treatment, blood samples were collected for the analysis of endogenous and H2O2-induced DNA damage and DNA oxidation catabolites, while urines were used for the analysis of oxylipins. On the whole, four DNA catabolites (cyclic guanosine monophosphate (cGMP), 8-OH-2′-deoxy-guanosine, 8-OH-guanine, and 8-NO2-cGMP) were detected in plasma samples following the one-month intervention. No significant modulation of DNA and lipid damage markers was documented among groups, apart from an effect of time for DNA strand breaks and some markers of lipid peroxidation. In conclusion, the consumption of coffee and cocoa-based confectionery containing coffee was apparently not able to affect oxidative stress markers. More studies are encouraged to better explain the findings obtained and to understand the impact of different dosages of these products on specific target groups
An integrated precision medicine approach in major depressive disorder: a study protocol to create a new algorithm for the prediction of treatment response
Major depressive disorder (MDD) is the most common psychiatric disease worldwide with a huge socio-economic impact. Pharmacotherapy represents the most common option among the first-line treatment choice; however, only about one third of patients respond to the first trial and about 30% are classified as treatment-resistant depression (TRD). TRD is associated with specific clinical features and genetic/gene expression signatures. To date, single sets of markers have shown limited power in response prediction. Here we describe the methodology of the PROMPT project that aims at the development of a precision medicine algorithm that would help early detection of non-responder patients, who might be more prone to later develop TRD. To address this, the project will be organized in 2 phases. Phase 1 will involve 300 patients with MDD already recruited, comprising 150 TRD and 150 responders, considered as extremes phenotypes of response. A deep clinical stratification will be performed for all patients; moreover, a genomic, transcriptomic and miRNomic profiling will be conducted. The data generated will be exploited to develop an innovative algorithm integrating clinical, omics and sex-related data, in order to predict treatment response and TRD development. In phase 2, a new naturalistic cohort of 300 MDD patients will be recruited to assess, under real-world conditions, the capability of the algorithm to correctly predict the treatment outcomes. Moreover, in this phase we will investigate shared decision making (SDM) in the context of pharmacogenetic testing and evaluate various needs and perspectives of different stakeholders toward the use of predictive tools for MDD treatment to foster active participation and patients' empowerment. This project represents a proof-of-concept study. The obtained results will provide information about the feasibility and usefulness of the proposed approach, with the perspective of designing future clinical trials in which algorithms could be tested as a predictive tool to drive decision making by clinicians, enabling a better prevention and management of MDD resistance
High-quality Extragalactic Legacy-field Monitoring (HELM) with DECam : project overview and first data release
Funding: This work is supported by NSF grants AST-2206499 and AST-2308077. R.J.A. was supported by FONDECYT grant No. 1231718 and by the ANID BASAL project FB210003. F.E.B. acknowledges support from ANID—Millennium Science Initiative Program —ICN12_009, CATA-BASAL—FB210003, and FONDECYT Regular—1200495. Y.Q.X. acknowledges support from the National Key R&D Program of China (2023YFA1608100), NSFC grants (12025303, 12393814), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0550300).High-quality Extragalactic Legacy-field Monitoring (HELM) is a long-term observing program that photometrically monitors several well-studied extragalactic legacy fields with the Dark Energy Camera (DECam) imager on the CTIO 4 m Blanco telescope. Since 2019 February, HELM has been monitoring regions within COSMOS, XMM-LSS, CDF-S, S-CVZ, ELAIS-S1, and SDSS Stripe 82 with few-day cadences in the (u)gri(z) bands, over a collective sky area of ∼38 deg2. The main science goal of HELM is to provide high-quality optical light curves for a large sample of active galactic nuclei (AGNs), and to build decades-long time baselines when combining past and future optical light curves in these legacy fields. These optical images and light curves will facilitate the measurements of AGN reverberation mapping lags, as well as studies of AGN variability and its dependencies on accretion properties. In addition, the time-resolved and coadded DECam photometry will enable a broad range of science applications from galaxy evolution to time-domain science. We describe the design and implementation of the program and present the first data release that includes source catalogs and the first ∼3.5 yr of light curves during 2019A–2022A.Peer reviewe
- …