123 research outputs found

    Diseño de un dispositivo intraoral para el tratamiento de la apnea obstructiva del sueño con levas optimizadas para adaptarse a la cinemática de la mandíbula del paciente mediante algoritmos evolutivos

    Get PDF
    Los Dispositivos de Avance Mandibular (DAM) han demostrado ser efectivos en el tratamiento de la Apnea Obstructiva del Sueño (AOS). Estos dispositivos abren las vías aéreas superiores manteniendo la mandíbula en una posición avanzada respecto a su posición de reposo. Hasta la fecha, ninguno de los dispositivos disponibles tiene en cuenta el comportamiento cinemático particular de la mandíbula de cada paciente. Este trabajo presenta un DAM personalizado para el tratamiento de la AOS. En primer lugar, se lleva a cabo un estudio de la cinemática de la mandíbula, que permite determinar la relación entre la apertura de la boca y la protrusión de la mandíbula. A continuación, se desarrolla un modelo cinemático de la mandíbula a partir de parámetros geométricos sencillos de medir. Por último, se diseña un dispositivo que incluye dos levas, una a cada lado de la mandíbula, para forzar el desplazamiento de la mandíbula hacia adelante cuando se abre la boca. El perfil de la leva se diseña utilizando una curva cúbica de Bézier optimizada mediante un algoritmo evolutivo que tiene en cuenta la cinemática de la mandíbula de cada paciente para garantizar que la mandíbula no retruye en ningún momento al abrir la boca.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    EZH2 endorses cell plasticity to non-small cell lung cancer cells facilitating mesenchymal to epithelial transition and tumour colonization

    Get PDF
    CGL was funded by the Consejería de Salud y Familias, Junta de Andalucía (RH-0139-2020) and SG-P is funded by Instituto de Salud Carlos III (CP19/00029, PI15/00336, PI19/01533). JAM is supported by RTI2018.101309B-C22 funded by MCIN/AEI/10.13039/501100011033/FEDER “Una manera de hacer Europa” and by the Chair “Doctors Galera-Requena in cancer stem cell research”. PCS is funded by Ministerio de Ciencia e Innovación (grant PID2020-119032RB-I00) and FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades (grants P20_00335 and B‐CTS‐40‐UGR20). The Landeira lab is supported by the Spanish ministry of science and innovation (PID2019-108108-100, EUR2021-122005), the Andalusian regional government (PC-0246-2017, PIER-0211-2019, PY20_00681) and the University of Granada (A-BIO-6-UGR20) grants.Reversible transition between the epithelial and mesenchymal states are key aspects of carcinoma cell dissemination and the metastatic disease, and thus, characterizing the molecular basis of the epithelial to mesenchymal transition (EMT) is crucial to find druggable targets and more effective therapeutic approaches in cancer. Emerging studies suggest that epigenetic regulators might endorse cancer cells with the cell plasticity required to conduct dynamic changes in cell state during EMT. However, epigenetic mechanisms involved remain mostly unknown. Polycomb Repressive Complexes (PRCs) proteins are well-established epigenetic regulators of development and stem cell differentiation, but their role in different cancer systems is inconsistent and sometimes paradoxical. In this study, we have analysed the role of the PRC2 protein EZH2 in lung carcinoma cells. We found that besides its described role in CDKN2A-dependent cell proliferation, EZH2 upholds the epithelial state of cancer cells by repressing the transcription of hundreds of mesenchymal genes. Chemical inhibition or genetic removal of EZH2 promotes the residence of cancer cells in the mesenchymal state during reversible epithelial–mesenchymal transition. In fitting, analysis of human patient samples and tumour xenograft models indicate that EZH2 is required to efficiently repress mesenchymal genes and facilitate tumour colonization in vivo. Overall, this study discloses a novel role of PRC2 as a master regulator of EMT in carcinoma cells. This finding has important implications for the design of therapies based on EZH2 inhibitors in human cancer patients.Junta de Andalucía (RH-0139-2020)Instituto de Salud Carlos III (CP19/00029, PI15/00336, PI19/01533)MCIN/AEI/10.13039/501100011033/FEDER “Una manera de hacer Europa” RTI2018.101309B-C22Chair “Doctors Galera-Requena in cancer stem cell research”Ministerio de Ciencia e Innovación (grant PID2020-119032RB-I00)FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades (grants P20_00335 and B‐CTS‐40‐UGR20)Spanish ministry of science and innovation (PID2019-108108-100, EUR2021-122005)Andalusian regional government (PC-0246-2017, PIER-0211-2019, PY20_00681)University of Granada (A-BIO-6-UGR20

    A field portable method for the semi-quantitative estimation of dehydration tolerance of photosynthetic tissues across distantly related land plants.

    Get PDF
    Preprint sustituido por postprint 9-12-2019Desiccation tolerant (DT) plants withstand complete cellular dehydration (reaching relative water contents below 30% in their photosynthetic tissues), while desiccation sensitive (DS) plants exhibit different degrees of dehydration tolerance (DHT), never surviving water loss >70%. To date, no procedure for the quantitative evaluation of DHT extent exists that is able to discriminate DS species with different degrees of DHT from truly DT plants. We developed a simple, feasible, and portable protocol to differentiate between constitutive DT and different degrees of DHT in photosynthetic tissues. The protocol is based on (i) controlled desiccation inside Falcon tubes equilibrated at three different relative humidities (RH: 80%, 50% and <10%) and (ii) evaluation of the average recovery level of maximal photochemical efficiency (Fv/Fm) after rehydration. Applying the method to 10 bryophytes and 28 tracheophytes from various locations, we found that (i) imbibition of absorbent material with saturated salt solutions inside the tubes provides stable RH and avoids direct contact with samples; (ii) for 50 mL capacity tubes, the optimal initial plant amount is 50–200 mg FW; (iii) the tubes can be re-used up to three times with very little changes in RH; (iv) the method is useful in remote locations due to minimal instrumental requirements; (v) a threshold of 30% recovery of the initial Fv/Fm correctly categorises DT species with a few exceptions among tracheophytes: poikilochorophyllous DT-species and some DS herbs and gymnosperms. The protocol provides a semi-quantitative expression of DHT that facilitates comparisons of species with different morpho-physiological traits and/or ecological attributes.Basque Government (UPV/EHU IT-1018-16); Spanish Ministry of Economy and Competitiveness (MINECO) and the ERDF (FEDER) (CTM2014-53902-C2-2-P to JIGP and BFM, CGL2014-54127-P to ENO and JMA, and CTM2014-53902-C2-1-P to JF and JG); Juan de la Cierva-Incorporation fellowship IJCI-2014-22489 to BFM and Juan de la Cierva-Formación FPDI-2013-18167 and FPDI-2013-17135 to MJCM and JoG respectively); MC was supported by a predoctoral fellowship FPI/1700/2014 from the Conselleria d’Educació, Cultura i Universitats (Govern de les Illes Balears) and ESF; MN was supported by a predoctoral fellowship BES-2015-072578 from the Spanish Ministry of Economy and Competitiveness (MINECO) co-financed by the ESF. APC was supported by Spanish Ministry of Education, Culture and Sport (MECD) fellowship (FPU15/02054). MLP was supported by a pre-doctoral grant from the Basque Government. Authors also wish to thank for giving access to the living plant collection of the Royal Botanic Garden Edinburgh. Jill M. Farrant acknowledges funding from the South African Department of Science and Technology and National Research Foundation (grant number 98406

    Minimally Invasive Autopsy Practice in COVID-19 Cases: Biosafety and Findings

    Get PDF
    Postmortem studies are crucial for providing insight into emergent diseases. However, a complete autopsy is frequently not feasible in highly transmissible diseases due to biohazard challenges. Minimally invasive autopsy (MIA) is a needle-based approach aimed at collecting samples of key organs without opening the body, which may be a valid alternative in these cases. We aimed to: (a) provide biosafety guidelines for conducting MIAs in COVID-19 cases, (b) compare the performance of MIA versus complete autopsy, and (c) evaluate the safety of the procedure. Between October and December 2020, MIAs were conducted in six deceased patients with PCR-confirmed COVID-19, in a basic autopsy room, with reinforced personal protective equipment. Samples from the lungs and key organs were successfully obtained in all cases. A complete autopsy was performed on the same body immediately after the MIA. The diagnoses of the MIA matched those of the complete autopsy. In four patients, COVID-19 was the main cause of death, being responsible for the different stages of diffuse alveolar damage. No COVID-19 infection was detected in the personnel performing the MIAs or complete autopsies. In conclusion, MIA might be a feasible, adequate and safe alternative for cause of death investigation in COVID-19 cases

    A Large Multicenter Prospective Study of Community-Onset Healthcare Associated Bacteremic Urinary Tract Infections in the Era of Multidrug Resistance: Even Worse than Hospital Acquired Infections?

    Get PDF
    Introduction: Healthcare-associated (HCA) infections represent a growing public health problem. The aim of this study was to compare community-onset healthcare associated (CO-HCA) bacteremic urinary tract infections (BUTI) and hospital-acquired (HA)-BUTI with special focus on multidrug resistances (MDR) and outcomes. Methods: ITUBRAS-project is a prospective multicenter cohort study of patients with HCA-BUTI. All consecutive hospitalized adult patients with CO-HCA-BUTI or HA-BUTI episode were included in the study. Exclusion criteria were: patients \ 18 years old, non-hospitalized patients, bacteremia from another source or primary bacteremia, non-healthcare related infections and infections caused by unusual pathogens of the urinary tract. Th main outcome variable was 30-day all-cause mortality with day 1 as the first day of positive blood culture. Logistic regression was used to analyze factors associated with clinical cure at hospital discharge and with receiving inappropriate initial antibiotic treatment. Cox regression was used to evaluate 30-day all-cause mortality. Results: Four hundred forty-three episodes were included, 223 CO-HCA-BUTI. Patients with CO-HCA-BUTI were older (p \ 0.001) and had more underlying diseases (p = 0.029) than those with HA-BUTI. The severity of the acute illness (Pitt score) was also higher in CO-HCABUTI (p = 0.026). Overall, a very high rate of MDR profiles (271/443, 61.2%) was observed, with no statistical differences between groups. In multivariable analysis, inadequate empirical treatment was associated with MDR profile (aOR 3.35; 95% CI 1.77?6.35), Pseudomonas aeruginosa (aOR 2.86; 95% CI 1.27?6.44) and Charlson index (aOR 1.11; 95% CI 1.01?1.23). Mortality was not associated with the site of acquisition of the infection or the presence of MDR profile. However, in the logistic regression analyses patients with CO-HCA-BUTI (aOR 0.61; 95% CI 0.40?0.93) were less likely to present clinical cure. Conclusion: The rate of MDR infections was worryingly high in our study. No differences in MDR rates were found between CO-HCA-BUTI and HA-BUTI, in the probability of receiving inappropriate empirical treatment or in 30-day mortality. However, CO-HCA-BUTIs were associated with worse clinical cure.Funding. This study and the journal’s Rapid Service Fee are sponsored and funded by MSD Spain. The study was also supported by Plan Nacional de I+D+i 2013–2016 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía, Industria y Competitividad, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0004, RD16/ 0016/0005, RD16/0016/0007, RD16/0016/0010, RD16/0016/0011 and RD16/0016/0015), co-financed by the European Development Regional Fund ‘A way to achieve Europe’ (ERDF), Operative program Intelligent Growth 2014–2020

    Search for tt¯ resonances in fully hadronic final states in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents a search for new heavy particles decaying into a pair of top quarks using 139 fb of proton-proton collision data recorded at a centre-of-mass energy of s = 13 TeV with the ATLAS detector at the Large Hadron Collider. The search is performed using events consistent with pair production of high-transverse-momentum top quarks and their subsequent decays into the fully hadronic final states. The analysis is optimized for resonances decaying into a tt¯ pair with mass above 1.4 TeV, exploiting a dedicated multivariate technique with jet substructure to identify hadronically decaying top quarks using large-radius jets and evaluating the background expectation from data. No significant deviation from the background prediction is observed. Limits are set on the production cross-section times branching fraction for the new Z′ boson in a topcolor-assisted-technicolor model. The Z′ boson masses below 3.9 and 4.7 TeV are excluded at 95% confidence level for the decay widths of 1% and 3%, respectively. [Figure not available: see fulltext.

    A Large Multicenter Prospective Study of Community-Onset Healthcare Associated Bacteremic Urinary Tract Infections in the Era of Multidrug Resistance: Even Worse than Hospital Acquired Infections?

    Get PDF
    Introduction: Healthcare-associated (HCA) infections represent a growing public health problem. The aim of this study was to compare community-onset healthcare associated (CO-HCA) bacteremic urinary tract infections (BUTI) and hospital-acquired (HA)-BUTI with special focus on multidrug resistances (MDR) and outcomes. Methods: ITUBRAS-project is a prospective multicenter cohort study of patients with HCA-BUTI. All consecutive hospitalized adult patients with CO-HCA-BUTI or HA-BUTI episode were included in the study. Exclusion criteria were: patients < 18 years old, non-hospitalized patients, bacteremia from another source or primary bacteremia, non-healthcare-related infections and infections caused by unusual pathogens of the urinary tract. The main outcome variable was 30-day all-cause mortality with day 1 as the first day of positive blood culture. Logistic regression was used to analyze factors associated with clinical cure at hospital discharge and with receiving inappropriate initial antibiotic treatment. Cox regression was used to evaluate 30-day all-cause mortality. Results: Four hundred forty-three episodes were included, 223 CO-HCA-BUTI. Patients with CO-HCA-BUTI were older (p < 0.001) and had more underlying diseases (p = 0.029) than those with HA-BUTI. The severity of the acute illness (Pitt score) was also higher in CO-HCA-BUTI (p = 0.026). Overall, a very high rate of MDR profiles (271/443, 61.2%) was observed, with no statistical differences between groups. In multivariable analysis, inadequate empirical treatment was associated with MDR profile (aOR 3.35; 95% CI 1.77–6.35), Pseudomonas aeruginosa (aOR 2.86; 95% CI 1.27–6.44) and Charlson index (aOR 1.11; 95% CI 1.01–1.23). Mortality was not associated with the site of acquisition of the infection or the presence of MDR profile. However, in the logistic regression analyses patients with CO-HCA-BUTI (aOR 0.61; 95% CI 0.40–0.93) were less likely to present clinical cure. Conclusion: The rate of MDR infections was worryingly high in our study. No differences in MDR rates were found between CO-HCA-BUTI and HA-BUTI, in the probability of receiving inappropriate empirical treatment or in 30-day mortality. However, CO-HCA-BUTIs were associated with worse clinical cure. © 2021, The Author(s)

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    A search for an unexpected asymmetry in the production of e(+)mu(-) and e(-)mu(+) pairs in proton-proton collisions recorded by the ATLAS detector at root s=13 TeV

    Get PDF
    This search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for e(+)mu(-) and e(-)mu(+) pairs to constrain physics processes beyond the Standard Model. It uses 139 fb(-1) of proton-proton collision data recorded at root s = 13 TeV at the LHC. Targeting sources of new physics which prefer final states containing e(+)mu(-) and e(-)mu(+), the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the R-parity-violating coupling lambda(23)(1)' is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when g(1R)(eu) = g(1R)(mu c) = 1, at 95% confidence level. The limit on the coupling reduces to g(1R)(eu) = g(1R)(mu c) = 0.46 for a mass of 1420 GeV

    Inhibition of ATG3 ameliorates liver steatosis by increasing mitochondrial function

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a major health threat in both developed and developing countries and is a precursor of the more advanced liver diseases, including non-alcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. Currently, understanding the multiple and complex molecular pathways implicated in NAFLD onset and progression is a major priority. The transcription factor p63, which belongs to a family comprising p53, p63, and p73,1 is one of many factors that contributes to the development of liver steatosis. The role of p63 as a tumor suppressor and in cell maintenance and renewal is well studied, but we have recently reported that it is also relevant in the control of lipid metabolism.2 p63 encodes multiple isoforms that can be grouped into 2 categories; isoforms with an acidic transactivation domain (TA) and those without this domain (domain negative). The TAp63α isoform is elevated in the liver of animal models of NAFLD as well as in liver biopsies from obese patients with NAFLD. Furthermore, downregulation of p63α in the liver attenuates liver steatosis in diet-induced obese (DIO) mice, while the activation of TAp63α increases hepatic fat content, mediated by the activation of IKKβ and endoplasmic reticulum stress.2 A specialized form of autophagy that degrades lipid droplets, termed “lipophagy”, is a major pathway of lipid mobilization in hepatocytes. Lipophagy is elevated in hepatoma cells upon exposure to free fatty acids,3 and reduces the fatty acid load in mouse hepatocytes.4 Its impairment has been associated with the development of fatty liver and insulin resistance3,5; in contrast, the autophagic flux is increased during the activation of hepatic stellate cells.6 In the present study, we used an unbiased proteomics approach to gain insight into novel proteins modulating lipid metabolism in the liver of mice with genetic knockdown or overexpression of TAp63α. We found that autophagy-related gene 3 (ATG3) was upregulated by TAp63α activation and downregulated after p63α inhibition. ATG3 is elevated in several animal models of NAFLD and in the liver of patients with NAFLD. Genetic overexpression of ATG3 increased the lipid load in hepatocytes, while its repression alleviated TAp63α- and diet-induced steatosis. ATG3 exerted its role in lipid metabolism by regulating SIRT1 and mitochondrial function. Collectively, these findings identify ATG3 as a novel factor implicated in the development of steatosisThis work has been supported by grants from FEDER/Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación (PA: RTI2018-095134-B-100; DS and LH: SAF2017-83813-C3-1-R; MLMC: RTC2019-007125-1; CD: BFU2017-87721; ML: RTI2018–101840-B-I00; GS; PID2019-104399RB-I00; RN: RTI2018-099413-B-I00 and RED2018-102379-T; MLMC: SAF2017-87301-R; TCD: RTI2018-096759-A-100), FEDER/Instituto de Salud Carlos III (AGR: PI19/00123), Xunta de Galicia (ML: 2016-PG068; RN: 2015-CP080 and 2016-PG057), Fundación BBVA (RN, GS and MLM), Proyectos Investigación en Salud (MLMC: DTS20/00138), Sistema Universitario Vasco (PA: IT971-16); Fundación Atresmedia (ML and RN), Fundación La Caixa (M.L., R.N. and M.C.), Gilead Sciences International Research Scholars Program in Liver Disease (MVR), Marató TV3 Foundation (DS: 201627), Government of Catalonia (DS: 2017SGR278) and European Foundation for the Study of Diabetes (RN and GS). This research also received funding from the European Community’s H2020 Framework Programme (ERC Synergy Grant-2019-WATCH- 810331, to RN, VP and MS). Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Hepáticas y Digestivas (CIBERehd) and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem). CIBERobn, CIBERehd and CIBERdem are initiatives of the Instituto de Salud Carlos III (ISCIII) of Spain which is supported by FEDER funds. We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644)S
    corecore