2,740 research outputs found

    Variability in high-mass X-ray binaries

    Get PDF
    Strongly magnetized, accreting neutron stars show periodic and aperiodic variability over a wide range of time scales. By obtaining spectral and timing information on these different time scales, we can have a closer look into the physics of accretion close to the neutron star and the properties of the accreted material. One of the most prominent time scales is the strong pulsation, i.e., the rotation period of the neutron star itself. Over one rotation, our view of the accretion column and the X-ray producing region changes significantly. This allows us to sample different physical conditions within the column but at the same time requires that we have viewing-angle-resolved models to properly describe them. In wind-fed high-mass X-ray binaries, the main source of aperiodic variability is the clumpy stellar wind, which leads to changes in the accretion rate (i.e., luminosity) as well as absorption column. This variability allows us to study the behavior of the accretion column as a function of luminosity, as well as to investigate the structure and physical properties of the wind, which we can compare to winds in isolated stars.Comment: 6 pages, 4 figures, accepted for publication in Astronomische Nachrichten (proceedings of the XMM-Newton Workshop 2019

    Changes in growth of tropical forests: evaluating potential biases

    Get PDF
    Over the past century almost every ecosystem on Earth has come under the influence of changes in atmospheric composition and climate caused by human activity. Tropical forests are among the most productive and extensive ecosystems, and it has been hypothesized that both the dynamics and biomass of apparently undisturbed, old-growth tropical forests have been changing in response to atmospheric changes. Long-term forest sample plots are a critical tool in detecting and monitoring such changes, and our recent analysis of pan-tropical-forest plot data has suggested that the biomass of tropical forests has been increasing, providing a modest negative feedback on the rate of accumulation of atmospheric CO2. However, it has been argued that some of these old forest plot data sets have significant problems in interpretation because of the use of nonstandardized methodologies. In this paper we examine the extent to which potential field methodological errors may bias estimates of total biomass change by detailed examination of tree-by-tree records from up to 120 Neotropical plots to test predictions from theory. Potential positive biases on measurements of biomass change include a bias in site selection, tree deformities introduced by the measurement process, poor methodologies to deal with tree deformities or buttresses, and nonrecording of negative growth increments. We show that, while it is important to improve and standardize methodologies in current and future forest-plot work, any systematic errors introduced by currently identified biases in past studies are small and calculable. We conclude that most tropical-forest plot data are of useful quality, and that the evidence does still weigh conclusively in favor of a recent increase of biomass in old-growth tropical forests

    Dental pulp pluripotent-like stem cells (DPPSC), a new stem cell population with chromosomal stability and osteogenic capacity for biomaterials evaluation

    Get PDF
    Background: Biomaterials are widely used to regenerate or substitute bone tissue. In order to evaluate their potential use for clinical applications, these need to be tested and evaluated in vitro with cell culture models. Frequently, immortalized osteoblastic cell lines are used in these studies. However, their uncontrolled proliferation rate, phenotypic changes or aberrations in mitotic processes limits their use in long-term investigations. Recently, we described a new pluripotent-like subpopulation of dental pulp stem cells derived from the third molars (DPPSC) that shows genetic stability and shares some pluripotent characteristics with embryonic stem cells. In this study we aim to describe the use of DPPSC to test biomaterials, since we believe that the biomaterial cues will be more critical in order to enhance the differentiation of pluripotent stem cells. Methods: The capacity of DPPSC to differentiate into osteogenic lineage was compared with human sarcoma osteogenic cell line (SAOS-2). Collagen and titanium were used to assess the cell behavior in commonly used biomaterials. The analyses were performed by flow cytometry, alkaline phosphatase and mineralization stains, RT-PCR, immunohistochemistry, scanning electron microscopy, Western blot and enzymatic activity. Moreover, the genetic stability was evaluated and compared before and after differentiation by short-comparative genomic hybridization (sCGH). Results: DPPSC showed excellent differentiation into osteogenic lineages expressing bone-related markers similar to SAOS-2. When cells were cultured on biomaterials, DPPSC showed higher initial adhesion levels. Nevertheless, their osteogenic differentiation showed similar trend among both cell types. Interestingly, only DPPSC maintained a normal chromosomal dosage before and after differentiation on 2D monolayer and on biomaterials. Conclusions: Taken together, these results promote the use of DPPSC as a new pluripotent-like cell model to evaluate the biocompatibility and the differentiation capacity of biomaterials used in bone regeneration

    INTEGRAL-RXTE observations of Cygnus X-1

    Get PDF
    We present first results from contemporaneous observations of Cygnus X-1 with INTEGRAL and RXTE, made during INTEGRAL's performance verification phase in 2002 November and December. Consistent with earlier results, the 3-250 keV data are well described by Comptonization spectra from a Compton corona with a temperature of kT~50-90 keV and an optical depth of tau~1.0-1.3 plus reflection from a cold or mildly ionized slab with a covering factor of Omega/2pi~0.2-0.3. A soft excess below 10 keV, interpreted as emission from the accretion disk, is seen to decrease during the 1.5 months spanned by our observations. Our results indicate a remarkable consistency among the independently calibrated detectors, with the remaining issues being mainly related to the flux calibration of INTEGRAL.Comment: 6 pages, 3 figures. Figs. 2 and 3 are best viewed in color. Accepted for publication in the INTEGRAL special edition of A&A

    Relativistic quantum mechanics of a Dirac oscillator

    Get PDF
    The Dirac oscillator is an exactly soluble model recently introduced in the context of many particle models in relativistic quantum mechanics. The model has been also considered as an interaction term for modelling quark confinement in quantum chromodynamics. These considerations should be enough for demonstrating that the Dirac oscillator can be an excellent example in relativistic quantum mechanics. In this paper we offer a solution to the problem and discuss some of its properties. We also discuss a physical picture for the Dirac oscillator's non-standard interaction, showing how it arises on describing the behaviour of a neutral particle carrying an anomalous magnetic moment and moving inside an uniformly charged sphere.Comment: 19 pages, 1 figur

    An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR)

    Get PDF
    The Amazon basin is likely to be increasingly affected by environmental changes: higher temperatures, changes in precipitation, CO2 fertilization and habitat fragmentation. To examine the important ecological and biogeochemical consequences of these changes, we are developing an international network, RAINFOR, which aims to monitor forest biomass and dynamics across Amazonia in a co-ordinated fashion in order to understand their relationship to soil and climate. The network will focus on sample plots established by independent researchers, some providing data extending back several decades. We will also conduct rapid transect studies of poorly monitored regions. Field expeditions analysed local soil and plant properties in the first phase (2001–2002). Initial results suggest that the network has the potential to reveal much information on the continental-scale relations between forest and environment. The network will also serve as a forum for discussion between researchers, with the aim of standardising sampling techniques and methodologies that will enable Amazonian forests to be monitored in a coherent manner in the coming decades

    Management of essential tremor deep brain stimulation-induced side effects

    Get PDF
    Deep brain stimulation (DBS) is an effective surgical therapy for carefully selected patients with medication refractory essential tremor (ET). The most popular anatomical targets for ET DBS are the ventral intermedius nucleus (VIM) of the thalamus, the caudal zona incerta (cZI) and the posterior subthalamic area (PSA). Despite extensive knowledge in DBS programming for tremor suppression, it is not uncommon to experience stimulation induced side effects related to DBS therapy. Dysarthria, dysphagia, ataxia, and gait impairment are common stimulation induced side effects from modulation of brain tissue that surround the target of interest. In this review, we explore current evidence about the etiology of stimulation induced side effects in ET DBS and provide several evidence-based strategies to troubleshoot, reprogram and retain tremor suppression

    The postulates of gravitational thermodynamics

    Get PDF
    The general principles and logical structure of a thermodynamic formalism that incorporates strongly self-gravitating systems are presented. This framework generalizes and simplifies the formulation of thermodynamics developed by Callen. The definition of extensive variables, the homogeneity properties of intensive parameters, and the fundamental problem of gravitational thermodynamics are discussed in detail. In particular, extensive parameters include quasilocal quantities and are naturally incorporated into a set of basic general postulates for thermodynamics. These include additivity of entropies (Massieu functions) and the generalized second law. Fundamental equations are no longer homogeneous first-order functions of their extensive variables. It is shown that the postulates lead to a formal resolution of the fundamental problem despite non-additivity of extensive parameters and thermodynamic potentials. Therefore, all the results of (gravitational) thermodynamics are an outgrowth of these postulates. The origin and nature of the differences with ordinary thermodynamics are analyzed. Consequences of the formalism include the (spatially) inhomogeneous character of thermodynamic equilibrium states, a reformulation of the Euler equation, and the absence of a Gibbs-Duhem relation.Comment: 28 pages, Revtex, no figures. An important sentence and several minor corrections included. To appear in Physical Review
    • …
    corecore