8 research outputs found

    Escherichia coli transcriptional regulatory network

    Get PDF
    Escherichia coli is the most well-know bacterial model about the function of its molecular components. In this review are presented several structural and functional aspects of their transcriptional regulatory network constituted by transcription factors and target genes. The network discussed here represent to 1531 genes and 3421 regulatory interactions. This network shows a power-law distribution with a few global regulators and most of genes poorly connected. 176 of genes in the network correspond to transcription factors, which form a sub-network of seven hierarchical layers where global regulators tend to be set in superior layers while local regulators are located in the lower ones. There is a small set of proteins know as nucleoid-associated proteins, which are in a high cellular concentrations and reshape the nucleoid structure to influence the running of global transcriptional programs, to this mode of regulation is named analog regulation. Specific signal effectors assist the activity of most of transcription factors in E. coli. These effectors switch and tune the activity of transcription factors. To this type of regulation, depending of environmental signals is named the digital-precise-regulation. The integration of regulatory programs have place in the promoter region of transcription units where it is common to observe co-regulation among global and local TFs as well as of TFs sensing exogenous and endogenous conditions. The mechanistic logic to understand the harmonious operation of regulatory programs in the network should consider the globalism of TFs, their signal perceived, coregulation, genome position, and cellular concentration. Finally, duplicated TFs and their horizontal transfer influence the evolvability of members of the network. The most duplicated and transferred TFs are located in the network periphery

    Coordination logic of the sensing machinery in the transcriptional regulatory network of Escherichia coli

    Get PDF
    The active and inactive state of transcription factors in growing cells is usually directed by allosteric physicochemical signals or metabolites, which are in turn either produced in the cell or obtained from the environment by the activity of the products of effector genes. To understand the regulatory dynamics and to improve our knowledge about how transcription factors (TFs) respond to endogenous and exogenous signals in the bacterial model, Escherichia coli, we previously proposed to classify TFs into external, internal and hybrid sensing classes depending on the source of their allosteric or equivalent metabolite. Here we analyze how a cell uses its topological structures in the context of sensing machinery and show that, while feed forward loops (FFLs) tightly integrate internal and external sensing TFs connecting TFs from different layers of the hierarchical transcriptional regulatory network (TRN), bifan motifs frequently connect TFs belonging to the same sensing class and could act as a bridge between TFs originating from the same level in the hierarchy. We observe that modules identified in the regulatory network of E. coli are heterogeneous in sensing context with a clear combination of internal and external sensing categories depending on the physiological role played by the module. We also note that propensity of two-component response regulators increases at promoters, as the number of TFs regulating a target operon increases. Finally we show that evolutionary families of TFs do not show a tendency to preserve their sensing abilities. Our results provide a detailed panorama of the topological structures of E. coli TRN and the way TFs they compose off, sense their surroundings by coordinating responses

    Transcriptional regulation shapes the organization of genes on bacterial chromosomes

    Get PDF
    Transcription factors (TFs) are the key elements responsible for controlling the expression of genes in bacterial genomes and when visualized on a genomic scale form a dense network of transcriptional interactions among themselves and with other protein coding genes. Although the structure of transcriptional regulatory networks (TRNs) is well understood, it is not clear what constrains govern them. Here, we explore this question using the TRNs of model prokaryotes and provide a link between the transcriptional hierarchy of regulons and their genome organization. We show that, to drive the kinetics and concentration gradients, TFs belonging to big and small regulons, depending on the number of genes they regulate, organize themselves differently on the genome with respect to their targets. We then propose a conceptual model that can explain how the hierarchical structure of TRNs might be ultimately governed by the dynamic biophysical requirements for targeting DNA-binding sites by TFs. Our results suggest that the main parameters defining the position of a TF in the network hierarchy are the number and chromosomal distances of the genes they regulate and their protein concentration gradients. These observations give insights into how the hierarchical structure of transcriptional networks can be encoded on the chromosome to drive the kinetics and concentration gradients of TFs depending on the number of genes they regulate and could be a common theme valid for other prokaryotes, proposing the role of transcriptional regulation in shaping the organization of genes on a chromosome

    Protein and mRNA levels support the notion that a genetic regulatory circuit controls growth phases in E. coli populations

    No full text
    Bacterial populations transition between growing and non-growing phases, based on nutrient availability and stresses conditions. The hallmark of a growing state is anabolism, including DNA replication and cell division. In contrast, bacteria in a growth-arrested state acquire a resistant physiology and diminished metabolism. However, there is little knowledge on how this transition occurs at the molecular level. Here, we provide new evidence that a multi-element genetic regulatory circuit might work to maintain genetic control among growth-phase transitions in Escherichia coli. This work contributes to the discovering of design principles behind the performance of biological functions, which could be of relevance on the new disciplines of biological engineering and synthetic biology

    Functional organisation of Escherichia coli transcriptional regulatory network

    Get PDF
    Taking advantage of available functional data associated with 115 transcription and 7 sigma factors, we have performed a structural analysis of the regulatory network of Escherichia coli. While the mode of regulatory interaction between transcription factors (TFs) is predominantly positive, TFs are frequently negatively autoregulated. Furthermore, feedback loops, regulatory motifs and regulatory pathways are unevenly distributed in this network. Short pathways, multiple feed-forward loops and negative autoregulatory interactions are particularly predominant in the subnetwork controlling metabolic functions such as the use of alternative carbon sources. In contrast, long hierarchical cascades and positive autoregulatory loops are overrepresented in the subnetworks controlling developmental processes for biofilm and chemotaxis. We propose that these long transcriptional cascades coupled with regulatory switches (positive loops) for external sensing enable the coexistence of multiple bacterial phenotypes. In contrast, short regulatory pathways and negative autoregulatory loops enable an efficient homeostatic control of crucial metabolites despite external variations. TFs at the core of the network coordinate the most basic endogenous processes by passing information onto multi-element circuits. Transcriptional expression data support broader and higher transcription of global TFs compared to specific ones. Global regulators are also more broadly conserved than specific regulators in bacteria, pointing to varying functional constraints
    corecore