432 research outputs found

    Fuzzy control of synchronous buck converters utilizing fuzzy inference system for renewable energy applications

    Get PDF
    In the present research, an innovative fuzzy control approach is developed specifically for synchronous buck converters utilized in renewable energy applications. The proposed control strategy effectively manages load changes, nonlinear loads, and input voltage variations while improving both stability and transient response. The method employs a fuzzy inference system (FIS) that integrates adaptive control, feedforward control, and multivariable control to guarantee optimal performance under a wide range of operating conditions. The design of the control scheme involves formulating a rule base connecting input variables to an output variable, which signifies the duty cycle of the switching signal. The rule base is configured to dynamically modify control rules and membership functions in accordance with load conditions, input voltage fluctuations, and other contributing factors. The performance of the control scheme is evaluated in comparison to conventional techniques, such as proportional integral derivative (PID) control. Results indicate that the advanced fuzzy control approach surpasses traditional methods in terms of voltage regulation, stability, and transient response, particularly when faced with variable load conditions and input voltage changes. As a result, this control scheme is highly compatible with renewable energy systems, encompassing solar and wind power installations where input voltage and load conditions may experience considerable fluctuations. This research highlights the potential of the proposed fuzzy control approach to significantly enhance the performance and reliability of renewable energy systems

    A novel visual tracking scheme for unstructured indoor environments

    Get PDF
    In the ever-expanding sphere of assistive robotics, the pressing need for advanced methods capable of accurately tracking individuals within unstructured indoor settings has been magnified. This research endeavours to devise a realtime visual tracking mechanism that encapsulates high performance attributes while maintaining minimal computational requirements. Inspired by the neural processes of the human brain’s visual information handling, our innovative algorithm employs a pattern image, serving as an ephemeral memory, which facilitates the identification of motion within images. This tracking paradigm was subjected to rigorous testing on a Nao humanoid robot, demonstrating noteworthy outcomes in controlled laboratory conditions. The algorithm exhibited a remarkably low false detection rate, less than 4%, and target losses were recorded in merely 12% of instances, thus attesting to its successful operation. Moreover, the algorithm’s capacity to accurately estimate the direct distance to the target further substantiated its high efficacy. These compelling findings serve as a substantial contribution to assistive robotics. The proficient visual tracking methodology proposed herein holds the potential to markedly amplify the competencies of robots operating in dynamic, unstructured indoor settings, and set the foundation for a higher degree of complex interactive tasks

    Comparative study of optimization algorithms on convolutional network for autonomous driving

    Get PDF
    he last 10 years have been the decade of autonomous vehicles. Advances in intelligent sensors and control schemes have shown the possibility of real applications. Deep learning, and in particular convolutional networks have become a fundamental tool in the solution of problems related to environment identification, path planning, vehicle behavior, and motion control. In this paper, we perform a comparative study of the most used optimization strategies on the convolutional architecture residual neural network (ResNet) for an autonomous driving problem as a previous step to the development of an intelligent sensor. This sensor, part of our research in reactive systems for autonomous vehicles, aims to become a system for direct mapping of sensory information to control actions from real-time images of the environment. The optimization techniques analyzed include stochastic gradient descent (SGD), adaptive gradient (Adagrad), adaptive learning rate (Adadelta), root mean square propagation (RMSProp), Adamax, adaptive moment estimation (Adam), nesterov-accelerated adaptive moment estimation (Nadam), and follow the regularized leader (Ftrl). The training of the deep model is evaluated in terms of convergence, accuracy, recall, and F1-score metrics. Preliminary results show a better performance of the deep network when using the SGD function as an optimizer, while the Ftrl function presents the poorest performances

    Sequential non-rigid structure from motion using physical priors

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We propose a new approach to simultaneously recover camera pose and 3D shape of non-rigid and potentially extensible surfaces from a monocular image sequence. For this purpose, we make use of the Extended Kalman Filter based Simultaneous Localization And Mapping (EKF-SLAM) formulation, a Bayesian optimization framework traditionally used in mobile robotics for estimating camera pose and reconstructing rigid scenarios. In order to extend the problem to a deformable domain we represent the object's surface mechanics by means of Navier's equations, which are solved using a Finite Element Method (FEM). With these main ingredients, we can further model the material's stretching, allowing us to go a step further than most of current techniques, typically constrained to surfaces undergoing isometric deformations. We extensively validate our approach in both real and synthetic experiments, and demonstrate its advantages with respect to competing methods. More specifically, we show that besides simultaneously retrieving camera pose and non-rigid shape, our approach is adequate for both isometric and extensible surfaces, does not require neither batch processing all the frames nor tracking points over the whole sequence and runs at several frames per second.Peer ReviewedPostprint (author's final draft

    Real-time 3D reconstruction of non-rigid shapes with a single moving camera

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper describes a real-time sequential method to simultaneously recover the camera motion and the 3D shape of deformable objects from a calibrated monocular video. For this purpose, we consider the Navier-Cauchy equations used in 3D linear elasticity and solved by finite elements, to model the time-varying shape per frame. These equations are embedded in an extended Kalman filter, resulting in sequential Bayesian estimation approach. We represent the shape, with unknown material properties, as a combination of elastic elements whose nodal points correspond to salient points in the image. The global rigidity of the shape is encoded by a stiffness matrix, computed after assembling each of these elements. With this piecewise model, we can linearly relate the 3D displacements with the 3D acting forces that cause the object deformation, assumed to be normally distributed. While standard finite-element-method techniques require imposing boundary conditions to solve the resulting linear system, in this work we eliminate this requirement by modeling the compliance matrix with a generalized pseudoinverse that enforces a pre-fixed rank. Our framework also ensures surface continuity without the need for a post-processing step to stitch all the piecewise reconstructions into a global smooth shape. We present experimental results using both synthetic and real videos for different scenarios ranging from isometric to elastic deformations. We also show the consistency of the estimation with respect to 3D ground truth data, include several experiments assessing robustness against artifacts and finally, provide an experimental validation of our performance in real time at frame rate for small mapsPeer ReviewedPostprint (author's final draft

    A deep reinforcement learning strategy for autonomous robot flocking

    Get PDF
    Social behaviors in animals such as bees, ants, and birds have shown high levels of intelligence from a multi-agent system perspective. They present viable solutions to real-world problems, particularly in navigating constrained environments with simple robotic platforms. Among these behaviors is swarm flocking, which has been extensively studied for this purpose. Flocking algorithms have been developed from basic behavioral rules, which often require parameter tuning for specific applications. However, the lack of a general formulation for tuning has made these strategies difficult to implement in various real conditions, and even to replicate laboratory behaviors. In this paper, we propose a flocking scheme for small autonomous robots that can self-learn in dynamic environments, derived from a deep reinforcement learning process. Our approach achieves flocking independently of population size and environmental characteristics, with minimal external intervention. Our multi-agent system model considers each agent’s action as a linear function dynamically adjusting the motion according to interactions with other agents and the environment. Our strategy is an important contribution toward real-world flocking implementation. We demonstrate that our approach allows for autonomous flocking in the system without requiring specific parameter tuning, making it ideal for applications where there is a need for simple robotic platforms to navigate in dynamic environments

    Hybrid fuzzy-sliding grasp control for underactuated robotic hand

    Get PDF
    A major part of the success of human-robots integration requires the development of robotic platforms capable of interacting in human environments. Human beings have an environment designed for their physical and morphological capacity, robots must adapt to these conditions. This paper presents a fuzzy-sliding hybrid grasp control for a five-finger robotic hand. As a design principle, the scheme takes into account the minimum force required on the object to prevent the object from slipping. The robotic hand uses force sensors on each finger to determine the grasp state. The control is designed with two control surfaces, one when there is slippage, the other when there is no slippage. For each surface, control rules are defined and unified by means of a fuzzy inference block. The proposed scheme is evaluated in the laboratory for different objects, which include spherical and cylindrical elements. In all cases, an excellent grasp was observed without producing deformations in the fragile objects

    Direct Sparse Mapping

    Get PDF
    Photometric bundle adjustment (PBA) accurately estimates geometry from video. However, current PBA systems have a temporary map that cannot manage scene reobservations. We present, direct sparse mapping, a full monocular visual simultaneous localization and mapping (SLAM) based on PBA. Its persistent map handles reobservations, yielding the most accurate results up to date on EuRoC for a direct method

    Nuevos sistemas de reconocimiento molecular basados en organocalcógenos. Agentes antiparasitarios y antiproliferativos

    Get PDF
    "Esta investigación ha sido financiada por los proyectos Síntesis estereocontrolada de espiroazúcares y de seleno-derivados y su evaluación como inhibidores enzimáticos y como agentes antioxidantes (CB-2015/257465, CONACYT, México), Moléculas y macromoléculas con actividad multidiana frente a enfermedades degenerativas (CTQ2016-78703-P) y Sistemas químicos para la vectorización y liberación selectiva de nuevos inhibidores enzimáticos citotóxicos (PID2020-116460RB-I00), estos dos últimos financiados por el MICIN (España). La investigación desarrollada en esta Tesis, que se encuentra dividida en tres capítulos (4-6), se enfoca en la búsqueda de productos con potencial actividad antiproliferativa, haciendo uso de algunas dianas terapéuticas relevantes"

    Modal space: a physics-based model for sequential estimation of time-varying shape from monocular video

    Get PDF
    The final publication is available at link.springer.comThis paper describes two sequential methods for recovering the camera pose together with the 3D shape of highly deformable surfaces from a monocular video. The nonrigid 3D shape is modeled as a linear combination of mode shapes with time-varying weights that define the shape at each frame and are estimated on-the-fly. The low-rank constraint is combined with standard smoothness priors to optimize the model parameters over a sliding window of image frames. We propose to obtain a physics-based shape basis using the initial frames on the video to code the time-varying shape along the sequence, reducing the problem from trilinear to bilinear. To this end, the 3D shape is discretized by means of a soup of elastic triangular finite elements where we apply a force balance equation. This equation is solved using modal analysis via a simple eigenvalue problem to obtain a shape basis that encodes the modes of deformation. Even though this strategy can be applied in a wide variety of scenarios, when the observations are denser, the solution can become prohibitive in terms of computational load. We avoid this limitation by proposing two efficient coarse-to-fine approaches that allow us to easily deal with dense 3D surfaces. This results in a scalable solution that estimates a small number of parameters per frame and could potentially run in real time. We show results on both synthetic and real videos with ground truth 3D data, while robustly dealing with artifacts such as noise and missing data.Peer ReviewedPostprint (author's final draft
    • …
    corecore