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ABSTRACT

In the ever-expanding sphere of assistive robotics, the pressing need for ad-
vanced methods capable of accurately tracking individuals within unstructured
indoor settings has been magnified. This research endeavours to devise a real-
time visual tracking mechanism that encapsulates high performance attributes
while maintaining minimal computational requirements. Inspired by the neu-
ral processes of the human brain’s visual information handling, our innovative
algorithm employs a pattern image, serving as an ephemeral memory, which fa-
cilitates the identification of motion within images. This tracking paradigm was
subjected to rigorous testing on a Nao humanoid robot, demonstrating notewor-
thy outcomes in controlled laboratory conditions. The algorithm exhibited a re-
markably low false detection rate, less than 4%, and target losses were recorded
in merely 12% of instances, thus attesting to its successful operation. More-
over, the algorithm’s capacity to accurately estimate the direct distance to the
target further substantiated its high efficacy. These compelling findings serve
as a substantial contribution to assistive robotics. The proficient visual tracking
methodology proposed herein holds the potential to markedly amplify the com-
petencies of robots operating in dynamic, unstructured indoor settings, and set
the foundation for a higher degree of complex interactive tasks.
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1. INTRODUCTION
The integration of robots into everyday human life is a rapidly developing field that presents numerous

research challenges and opportunities [1]. Assistive robotics, which is the use of robots in homes to provide
care, entertainment, and company, has gained significant attention in recent years [2]. This type of applica-
tion requires the development of advanced robotics technologies, such as control, learning, bipedal walking,
fine manipulation, and human-robot interaction [3]. However, the use of robots in unstructured and dynamic
environments, designed for human interaction, presents new and complex challenges. For assistive robots to
be effective, they must be able to understand the intentions of human beings by sensing their behavior in the
environment. This task requires the integration of multiple technologies and approaches, including computer
vision, machine learning, and human-robot interaction. Despite the progress that has been made in these areas,
many of the proposed solutions are still computationally demanding and require further refinement [4]. In or-
der to overcome these challenges and fully realize the potential of assistive robotics, it is essential to conduct
rigorous and interdisciplinary research that advances the state-of-the-art in control, learning, bipedal walking,
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fine manipulation, and human-robot interaction.
As the field of robotics continues to evolve, the integration of robots into daily human life has become a

central focus for researchers. Assistive robots are designed to perform tasks such as surveillance, entertainment,
companionship, and care, which require them to interact with humans in unstructured, dynamic environments
[5]. These robots present new challenges, as they must recognize people, track them, and understand their state
of mind and activity [6], [7]. The foundation of social interaction is visual information, which is why robots
that interact with humans must process visual information in a way that imitates the human brain [8], [9]. The
processing of visual information by the human brain is a complex process that requires the ability to recognize
and track people in real-time [10]. The challenge of determining the position of a human body in a video stream
is significant due to the many variations of the body throughout the sequence [11].

In recent literature, there have been numerous applications of tracking and control from camera im-
ages, including autonomous applications in real-time, where the robot extracts information from the image to
make motion decisions [12]. These applications rely on specific hardware configurations and algorithms that
have been developed to support them. However, the ability to process visual information in a way that mimics
the human brain and operates with a low computational cost remains an open engineering problem [13], [14].
The robotics has made significant progress in recent years, with advancements in areas such as visual percep-
tion and tracking. For this purpose, various techniques have been proposed to capture the visual information
and process it to identify and track people. One such technique is pattern recognition, which looks for specific
shapes, colors, and movement characteristics in the images captured by the robot’s cameras [15]. This process
is complex, as the robot must identify the correct set of parameters to characterize a person, which can be
challenging given the diversity of operating environments [16]. Moreover, some techniques, such as the use of
histograms of oriented gradient (HOG) descriptors and support vector machine classifiers, are computationally
expensive for real-time applications on small autonomous robots [17].

The robot must know the pattern beforehand to use pattern recognition effectively. However, this is
not always possible, especially in a service robot, which must operate in a variety of environments and interact
with a diverse set of people. In these cases, it is better for the robot to autonomously learn the pattern through
its interactions with people [18]. For example, the robot could learn to recognize a person’s silhouette through
observing their movements. This approach is particularly important when the pattern (in this case, the silhouette
of a person) is not rigid, but instead changes with their movements. Thus, learning the pattern should focus
more on movement observation than on the detection of people in images.

The majority of visual tracking systems only employ monocular vision, which is prone to high false
detection rates due to the absence of depth information in two-dimensional images [19]. To overcome this
limitation, stereoscopic vision has been proposed as a solution, which utilizes two cameras to provide depth
information, leading to a reduction in the number of false detections [20]. However, the use of stereoscopic
vision comes with an increased computational cost, which may restrict its use in smaller platforms.

To further improve the performance of visual tracking systems, researchers have proposed combining
the camera system with other sensors, such as acoustic sensors or laser range finders (LRF). This strategy allows
for the integration of additional information, increasing the robustness of the system. However, this approach
also increases the computational load and the complexity of the algorithms involved, making it challenging
to implement in small platforms [15], [21]. Additionally, the use of people as tracking elements may not be
feasible in service robots, which need to operate in a variety of environments without specific cues.

In this research, we propose a novel identification and tracking scheme for human beings based on
their movement in video frames. Our scheme operates under the assumption that the movement in the frames
is caused by a human. The scheme involves three main steps. First, the movement is detected by a differential
filter, which has a memory effect on the robot and detects combined patterns of moving objects and colors
in the frames. Second, the information gathered from the differential filter is then classified using a k-means
clustering algorithm. The k-means clustering algorithm is used to determine the presence and position of
the human, information that is then used by the robot to react and track the person. The algorithm has been
implemented directly in Python, without relying on image processing libraries such as OpenCV, to reduce its
computational requirement and allow for fast execution in parallel with other tasks. Finally, the algorithm has
been implemented on the Nao robot developed by Aldebaran Robotics (SoftBank Group), however, its design is
scalable and can be implemented on small robots as well [22]. The scheme can also be augmented with auditory
information through acoustic tracking [23], either as parallel schemes or by integrating the two sensors into a
single algorithm [24]. The integration of auditory information with visual information can provide a more
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robust tracking solution, which is especially useful in noisy or cluttered environments.

2. BACKGROUND
In recent years, there has been a growing interest in the development of assistive navigation systems

and mobile robots to aid blind and visually impaired individuals with indoor travel and to support human-robot
interaction experiments. A number of studies have explored different approaches to solving the challenges
associated with these systems. For instance, [25] presented a novel vision-based mobile assistive navigation
system that helps blind and visually impaired individuals to travel independently indoors. The system integrates
various sensors and algorithms to provide a holistic solution that enables these individuals to navigate and
avoid obstacles in their environment. In [26] introduced the Georgia Tech Miniature Autonomous Blimp (GT-
MAB), which is designed to support human-robot interaction experiments in indoor spaces. The GT-MAB is
equipped with sensors and algorithms that allow it to interact with humans and respond to their movements.
This system provides a unique platform for studying human-robot interaction and exploring new approaches to
assistive navigation. In [27] focused on an alternative solution to existing filtering techniques by introducing the
belief condensation filter (BCF) for localization via Bluetooth low energy (BLE)-enabled beacons. The BCF
is designed to provide a more efficient and effective way to determine the location of a mobile robot within
an environment. By incorporating the BCF, the researchers were able to demonstrate improved accuracy and
robustness in the localization of mobile robots.

In another study, Feng et al. [28] proposed an integrated indoor positioning system (IPS) that com-
bines the use of inertial measurement units (IMU) and ultra-wideband (UWB) technology. By integrating these
technologies, the researchers were able to improve the robustness and accuracy of the IPS by using the extended
Kalman filter (EKF) and unscented Kalman filter (UKF). The IPS provides a comprehensive solution for deter-
mining the location of a mobile robot within an indoor environment. Al Khatib et al. [29] presented a low-cost
approach for solving the navigation problem of wheeled mobile robots in indoor and outdoor environments.
The researchers proposed an efficient geometric outlier detection method that uses dynamic information from
previous frames and a novel probability model to judge moving objects, with the help of geometric constraints
and human detection [30]. Liu and Miura [31] proposed a fuzzy detection strategy to prejudge the tracking
result and to improve the accuracy of the navigation system. Additionally, they proposed an efficient geometric
outlier detection method that uses dynamic information from previous frames and a novel probability model to
judge moving objects with the help of geometric constraints and human detection. Xue et al. [32] explored the
tracking problem of cluster targets and proposed new solutions to improve the accuracy of target tracking.

The recent trend towards the development of internet of things (IoT) architectures has led to the trans-
formation of standard camera networks into smart multi-device systems that are capable of acquiring, elaborat-
ing, and exchanging data, and adapting to the environment dynamically. Giordano et al. [33] proposed a novel
distributed solution that guarantees real-time monitoring of 3D indoor structured areas and tracking of multiple
targets. The solution employs a heterogeneous visual sensor network composed of both fixed and pan-tilt-zoom
(PTZ) cameras. Finally, Shi et al. [34] proposed a novel hybrid method that combines visual and probabilistic
localization results to improve the accuracy of indoor positioning systems. By combining these two techniques,
the researchers were able to demonstrate improved accuracy in the determination of the location of a mobile
robot within an indoor environment.

In conclusion, the field of robotics has seen significant advancements in the development of solutions
to support the navigation and localization needs of mobile robots operating in indoor environments. A range
of approaches have been proposed, including vision-based systems, integration of IMU and UWB, low-cost
approaches, and the incorporation of probabilistic methods. The increasing trend towards the development of
IoT architectures has led to the transformation of standard camera networks into smart multi-device systems
capable of acquiring, elaborating and exchanging data, and adapting dynamically to the environment. In this
line, novel solutions have been proposed that guarantee real-time monitoring and tracking of multiple targets
using heterogeneous visual sensor networks. These advancements represent significant steps forward in the
development of robust and accurate navigation systems for indoor environments and provide promising avenues
for future research and development.

3. METHOD
The visual tracking scheme presented in this study is designed to achieve high performance while be-
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ing being simple and computationally efficient. The scheme aims to minimize false detections and maintain
stability in tracking the target object. The approach utilizes monocular vision and only processes images
captured by the robot’s camera when it is not undergoing any movement. The images captured by the robot’s
camera undergo a processing stage, where the existence of movement in the environment is determined. This
is achieved through the use of image analysis algorithms and algorithms that detect changes in position and
movement patterns. The proposed scheme does not rely on additional sensors, making it a computationally
efficient solution for human tracking in robotics.

The architecture of the visual tracking scheme is illustrated in Figure 1. The figure provides a high-
level overview of the components and steps involved in the tracking algorithm. The algorithm is designed to
operate in real-time, enabling the robot to quickly respond to changes in its environment. The approach taken
in the design of the algorithm balances computational efficiency with performance, making it a valuable con-
tribution.

Figure 1. Architecture of the proposed visual tracking scheme

3.1. Differential filter
Our differential filter operates based on the principles of how the human brain processes visual infor-

mation from the eyes. Just like the retina in the eye, which is located at the back and receives light through
specialized cells (rods and cones), our filter differentiates between peripheral and central information. The rods
in the eye, responsible for peripheral vision, have high sensitivity to light but are unable to detect details, while
the cones, located mostly in the center of the retina, are capable of detecting details and colors. This means
that despite having a wide peripheral vision, the eye only processes detailed information in the center of vision
where the gaze is focused [35]. As the center of focus moves away, the level of detail decreases.

Our differential filter mimics this biological strategy by focusing its attention on the object of interest,
in this case a moving object (human body), and disregarding irrelevant information [36]. The filter detects
the object by comparing the current image with a pattern image stored in memory that is constructed from
the changes in the pixel values of previous images. This process is a representation of the brain’s autonomous
mechanism for processing unknown information by relating it to patterns stored in memory based on individual
experience, reducing the amount of information to be processed and the total processing time.

The human brain’s ability to recognize patterns and relate new information to previously stored infor-
mation is a crucial aspect of visual processing. This process of relating new information to stored patterns is a
powerful strategy for reducing the amount of information that needs to be processed and stored, thus optimizing
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the processing time and storage costs. The mechanism behind this is autonomous and enables individuals to
work with unknown information by relating it to the stored memories. This biological strategy is what makes
people identify figures in clouds or faces on toast. The brain continually tries to complete the visual information
received from the eyes with previous information stored in memory. By comparing the incoming information
with patterns already stored, the brain can quickly make connections and categorize the information, thereby
reducing the amount of time and resources required for processing.

Moreover, the brain performs a series of information selection processes to discard irrelevant informa-
tion, such as information that is not directly related to the task at hand. This selection process further optimizes
the visual processing system by reducing the amount of data that needs to be processed, increasing the speed
and accuracy of the process. In this way, the functioning of the human brain when processing visual informa-
tion from the eyes can be seen as a highly optimized system that balances the need for detail and speed, and
ensures the most efficient use of resources. This mechanism of processing visual information serves as a model
for our differential filter, which mimics the functioning of the human brain to optimize the processing of visual
information in our robotic system.

The operating model of our system incorporates the essential features of the human brain’s visual
information processing mechanism. Detection and tracking of objects in motion is achieved through the identi-
fication of movements, with the moving object, in this case, the human body, serving as the center of attention.
The rest of the visual information is categorized as background and is considered irrelevant. In this approach,
the visual information is differentiated into two main components: the object and the background. The object
is the focus of attention, the item in motion that is being monitored, while the background encompasses all the
surrounding elements. This differentiation between the object and background is crucial in enabling the system
to efficiently process and analyze the visual information, allowing it to selectively focus its attention on the
moving object.

By replicating the human brain’s visual information processing mechanism, our system is able to
achieve a high level of accuracy and efficiency in detecting and tracking objects in motion, making it a valuable
tool in various fields, including but not limited to, robotics, surveillance, and human-computer interaction. The
object (human body) is detected by comparing the current image CI(t) with another pattern image stored in
memory BI(t) (background image). This pattern image is constructed from the pixel changes of the previous
images. The value of each pixel is updated with each image captured according to (1):

gi = βigi + (1− βi)× p (CI (t))i ⧸i = 1, 2, . . . , l (1)

where:
− l is the number of pixels in the image, i.e. l = m× n for an image of m× n pixels.
− pi is the grayscale color (amount of light in the pixel) of the i-th pixel in the image.
− bi is the distance between the pixels i of the images BI(t) and BI(t-1) calculated as (2):

βi = 1−
|p (BI (t))i − p (BI (t− 1))i|

255
(2)

This β inherently exhibits an inverse relationship with pixel distances, ranging from 0 to 1, allocating
high values when pixel distances are compact, and conversely, low values when these distances are expansive.
One of the defining features of our filter is its ability to create and systematically update a pattern image, denoted
by BI (t), which is temporarily archived in memory. This pattern image formation revolves around the vigilant
tracking of fluctuations in pixel values within a sequence of captured images over a specified timeframe, as
mathematically represented in (1).

The functional essence of this pattern image resides in its role as a point of reference for identifying
moving entities in the present image, termed as CI (t). This is achieved through a comparative analysis between
the pattern image and the current image. Given the continuous updating mechanism of the pattern image, it
possesses the capacity to rapidly register alterations and discern between elements that exhibit motion and sta-
tionary background elements. Interestingly, background entities that cease motion are eventually disregarded
in this process. Figure 2 provides a graphical illustration encapsulating the operational behavior of our differ-
ential filter. Furthermore, the practical application and overall functionality of our differential filter is vividly
demonstrated in Figure 3.
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Figure 2. Pattern image construction from in-memory images

Figure 3. Differential filter operation when a person appears in front of the robot

3.2. Position identifier
The k-means clustering algorithm is a widely used unsupervised machine learning technique that aims

to partition a given dataset into a predefined number of clusters, k, based on the similarity of their features. The
algorithm operates by iteratively updating the centroids of the clusters until convergence, where the data points
are assigned to the nearest centroid. One of the key strengths of k-means is its simplicity and computational
efficiency, making it a popular choice for many real-world applications such as image segmentation, text clus-
tering, and customer segmentation. Despite its simplicity, k-means is a powerful tool that can effectively
identify meaningful patterns and structures in large and complex datasets.

To effectively apply k-means, it is essential to choose an appropriate value for k. In general, a larger
value of k can lead to finer grained clusters, but may also result in over-fitting the data. On the other hand,
a smaller value of k may result in coarser clusters that do not accurately reflect the underlying structure of
the data. A popular heuristic for choosing k is the elbow method, which involves analyzing the relationship
between the number of clusters and the within-cluster sum of squares.

Once k has been selected, k-means operates by first initializing the centroids randomly, and then iter-
atively updating the cluster assignments and centroids. The algorithm terminates when the cluster assignments
no longer change, or when a maximum number of iterations has been reached. The final result of the k-means
algorithm is a partition of the data into k clusters, with each cluster represented by its centroid. In our study, we
use a dataset consisting of pairs of differential filter results, CR(t), and corresponding current images, CI (t), in
RGB color format. To effectively incorporate both spatial and color information in our analysis, we represent
each pixel as a vector that consists of both its position (x, y) and its color information.

However, it is important to note that the color information is only used for the pixels that are identi-
fied in the comparison result CR(t). For the background pixels in the image, which are not identified by the
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differential filter, we assign a white color value of (R = 255, G = 255, B = 255). This allows us to effectively
incorporate both the result of the differential filter comparison and the color information of the current image in
our analysis. By defining the dataset in this manner, we are able to effectively capture both the spatial and color
information of the pixels in the image, which will be useful for subsequent processing and analysis. This is a
crucial step in our study, as it provides the necessary foundation for our analysis and allows us to effectively
utilize both the information provided by the differential filter and the color information of the current image.
Vectors are defined as (3).

qi = (qR.i, qG,i, qB,i, qx,i, qy,i) ⧸i = 1, 2, . . . , l (3)

In our study, we have chosen to define a total of k=3 clusters to be identified in each dataset using the k-means
algorithm. The purpose of this is to gain a deeper understanding of the data and to be able to accurately
estimate various attributes related to the presence of a person in the dataset. The k-means algorithm provides
the coordinates (x, y) of three points that, when combined, form a triangular area. This triangular area is easily
analyzed to estimate if the object within the area is indeed a person. Furthermore, we are able to use the
information provided by the k-means algorithm to estimate the approximate distance from the person to the
robot, as well as the relative position of the person’s head.

Additionally, the triangular area and the information provided by the k-means algorithm can also be
used to estimate whether the person is standing or not. This is a crucial step in our study, as it provides valuable
information that can be used to inform the robot’s actions and interactions with the person. The objective of
the robot is to attentively monitor the movements of human beings. To achieve this, we use the information
obtained from the k-means algorithm, which provides valuable insights into the presence and attributes of a
person in the dataset.

The robot has been programmed to respond to human movements, with the head being the only re-
sponse element in our laboratory tests. By utilizing the information provided by the k-means algorithm, we
are able to coordinate the movements of the robot’s head in a way that ensures that the robot always tracks the
head of the person. Based on the size and shape of the triangular area, we estimate the distance between the
robot and the person. Additionally, we are able to determine the position of the person’s head, which is critical
information for the robot to effectively track the person. In order to ensure that the robot is always attentively
monitoring the person, it is crucial that the face of the robot is always directed towards the person. This is a
critical step in our study, as it allows us to ensure that the robot is effectively able to monitor and respond to
the movements of human beings.

4. RESULT AND DISCUSSION
We utilize two distinct robotic platforms to address the challenges of human-robot interaction and

indoor navigation. The humanoid Nao robot from SoftBank Group serves as the primary interface for human
interaction, providing a natural and intuitive means for communication and collaboration with the environment
[14]. Equipped with advanced sensors and actuators, the Nao robot allows for real-time monitoring of hu-
man behavior and the ability to respond dynamically to changing scenarios. On the other hand, the ARMOS
TurtleBot 1 robot from the Arquitecturas Modernas para Sistemas de Alimentación (ARMOS) research group
was employed for indoor navigation, leveraging its superior mobility and navigation capabilities. The Turtle-
Bot robot was integrated with the Nao robot through a Wi-Fi connection, providing seamless communication
between the two platforms as seen in Figure 4.

To implement our proposed solution, we developed the algorithm in Python, which was programmed
onto the Nao robot. The use of Python allowed us to effectively harness the full power of the Nao robot’s
hardware and software capabilities, while also providing a highly accessible and scalable platform for future
developments and advancements. The combination of these two robotic platforms, along with the implemen-
tation of our novel algorithm, has the potential to deliver significant improvements in the field of assistive
robotics, opening up new avenues for innovative applications and research [29].

We utilized high resolution images of size 1280×720 pixels to capture the movements of objects in
the environment. In order to ensure that the movements recorded in the images were solely the result of objects
external to the robot, a decision was made to only capture a single image when the robot was not making any
movements. This approach was based on the biological model of visual perception, which suggests that in the
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absence of any movement, the image captured at a given time remains static. To further enhance the accuracy
of our results, the images were captured at an interval of 100 milliseconds when no movement was detected.
This allowed us to accurately record and process the movements of external objects in real-time, enabling the
robot to respond appropriately to its environment.

Figure 4. Experimental setup for the human-tracking robot. It is composed of a humanoid Nao robot from
SoftBank Group at the top and an ARMOS TurtleBot 1 tank robot from the ARMOS research group at the

bottom

In our experiments, we aimed to thoroughly test the capabilities of our assistive robot under various
conditions. To achieve this, we conducted a series of experiments with varying lighting conditions, environ-
ments, and distances between the robot and the people involved. This was to ensure that our robot could
effectively perform its intended tasks in various scenarios, and provide meaningful assistance to the people it
interacts with. To further validate our approach, we also performed tests with multiple people present in the
robot’s field of vision. These tests allowed us to evaluate the robot’s ability to distinguish between multiple
individuals, and track their movements accurately. This information is crucial in ensuring that our robot can
provide personalized assistance to multiple individuals simultaneously.

We documented our experiments using video footage, which can be seen in the accompanying video
link [37]. This footage provides visual evidence of the robustness and effectiveness of our assistive robot,
and highlights its ability to perform its intended tasks under different conditions. The video footage is also
accompanied by a still image see Figure 5, which provides a visual representation of one of our experiments.

Figure 5. Development of one of the visual tracking tests
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The robot has the capability to detect movement in its environment with high accuracy. The algorithm
used to achieve this demonstrated remarkable performance in laboratory tests, surpassing the expectations of
the researchers. False detections occurred infrequently, only in 4% of the cases, and were primarily due to the
movement of the ARMOS TurtleBot 1 platform, which currently does not have direct communication with the
Nao robot. A small percentage (12%) of target losses were observed, typically when the object was moving at
high speeds and exceeded the robot’s image capture rate.

We aimed to ascertain the direct, real-world distance separating the robot and a human entity within
the same environmental context [8]. To achieve this, we employed a method centered around geometric analysis
of a triangular region distinctly defined by three distinct data points. These specific points were procured by
leveraging the statistical of the k-means clustering algorithm. The triangular area constituted by these three
points was then meticulously scrutinized. Our method extrapolated the spatial relation of the points within the
triangle, using their relative positioning and the magnitude of the area they enclosed, to draw inferences about
the actual physical distance between the robot and the individual.

Despite the simplicity of the algorithm, the results obtained were quite remarkable. The estimated
distance obtained from the geometric parameters was compared with the real distance of the object, and the
results showed a high degree of accuracy as seen in Figure 6. This suggests that the distance estimation scheme
derived from this simple algorithm is a valuable tool for robotic applications where distance measurement is
important, such as navigation and human-robot interaction.

Time [s]

−2 0 2 4 6 8 10 12

Figure 6. Direct distance from the robot to the person during a movement estimated from the tracking
strategy. The black curve represents the raw data obtained from each image analyzed, and the blue curve

corresponds to the data smoothed by means of a moving average of 20 points

The success of this method can be attributed to it is reliance on the fundamental principle of geometry,
which states that the larger the area of the triangle, the farther the distance between its vertices. By utilizing this
principle, our algorithm was able to provide robust and reliable estimates of the distance between the robot and
the object in its environment. These results open up new avenues for further research in the field of robotics,
and demonstrate the potential for using simple geometric principles to improve the performance of robotic
systems.

5. CONCLUSION
The people tracking strategy presented in this paper is a novel contribution to the field of small assistive

robots. The strategy’s unique combination of high performance and low computational and memory storage
cost makes it an attractive solution for the development of small assistive robots. The strategy mimics the
human brain’s behavior when processing visual information and utilizes a differential filter and a k-means
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clustering algorithm to track objects in unstructured indoor environments. The results of the performance
evaluation showed that the strategy has a low percentage of false detections and accurately tracks the motion
parameters of the robot head. The strategy’s ability to store short-term memory of previous observations and to
construct a pattern image to detect movement is a testament to the robustness of the approach. The strategy’s
low computational cost makes it an attractive solution for small assistive robots, which are often limited by the
available processing power. Additionally, the strategy’s low memory storage cost makes it suitable for small
robots with limited memory capacity.

In future work, we plan to extend the scope of the strategy’s evaluation to include different scenar-
ios with different levels of complexity, such as tracking multiple objects simultaneously or tracking objects in
outdoor environments. We also plan to integrate the people tracking strategy into the control architecture of a
small assistive robot, to demonstrate its practical applicability. In conclusion, the people tracking strategy pre-
sented in this paper represents a significant step forward in the development of small assistive robots. The high
performance and low computational and memory storage cost make it a promising solution for the development
of future small assistive robots.
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