608 research outputs found
International Investment Agreements, Human Rights, and Environmental Justice: The Texaco/Chevron Case From the Ecuadorian Amazon
The Texaco/Chevron lawsuit, which started in November 1993 and is still being litigated
in 2020, is a prominent example ofthe process of judicialization of environmental conflict.
The Ecuadorian plaintiffs claim that the oil company’s operations generated ruinous
impacts on the environment and on the development prospects and health of nearby
individuals and communities. The tortuous and lengthy judiciary process was further
hindered by an arbitration process, an Investor–State Dispute Settlement mechanism
nested in the Ecuador—United States Bilateral Investment Treaty. The significance of the
case goes beyond the specifics of Ecuador and provides further arguments fuelling the
protracted legitimacy crisis experienced by International Investment Agreements. The
current praxis of Investor–State Dispute Settlement mechanisms is generating an asymmetrical system, protectingthe interest of investors, and intruding intothe space of human
and environmental rights. These issues are resonating with social movements, activist
scholars and policy makers who are reacting to the vulnerabilities engendered by International Investment Agreements thro
The dark side of curvature
Geometrical tests such as the combination of the Hubble parameter H(z) and
the angular diameter distance d_A(z) can, in principle, break the degeneracy
between the dark energy equation of state parameter w(z), and the spatial
curvature Omega_k in a direct, model-independent way. In practice, constraints
on these quantities achievable from realistic experiments, such as those to be
provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination
with CMB data, can resolve the cosmic confusion between the dark energy
equation of state parameter and curvature only statistically and within a
parameterized model for w(z). Combining measurements of both H(z) and d_A(z) up
to sufficiently high redshifts around z = 2 and employing a parameterization of
the redshift evolution of the dark energy equation of state are the keys to
resolve the w(z)-Omega_k degeneracy.Comment: 18 pages, 9 figures. Minor changes, matches version accepted in JCA
EUROnu-WP6 2010 Report
This is a summary of the work done by the Working Package 6 (Physics) of the
EU project "EUROnu" during the second year of activity of the project.Comment: 82 pages, 51 eps figure
Space-time inhomogeneity, anisotropy and gravitational collapse
We investigate the evolution of non-adiabatic collapse of a shear-free
spherically symmetric stellar configuration with anisotropic stresses
accompanied with radial heat flux. The collapse begins from a curvature
singularity with infinite mass and size on an inhomogeneous space-time
background. The collapse is found to proceed without formation of an even
horizon to singularity when the collapsing configuration radiates all its mass
energy. The impact of inhomogeneity on various parameters of the collapsing
stellar configuration is examined in some specific space-time backgrounds.Comment: To appear in Gen. Relativ. Gra
Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors
We explore the physics potential of multi-megaton scale ice or water
Cherenkov detectors with low ( GeV) threshold. Using some proposed
characteristics of the PINGU detector setup we compute the distributions of
events versus neutrino energy and zenith angle , and study
their dependence on yet unknown neutrino parameters. The
regions are identified where the distributions have the highest sensitivity to
the neutrino mass hierarchy, to the deviation of the 2-3 mixing from the
maximal one and to the CP-phase. We evaluate significance of the measurements
of the neutrino parameters and explore dependence of this significance on the
accuracy of reconstruction of the neutrino energy and direction. The effect of
degeneracy of the parameters on the sensitivities is also discussed. We
estimate the characteristics of future detectors (energy and angle resolution,
volume, etc.) required for establishing the neutrino mass hierarchy with high
confidence level. We find that the hierarchy can be identified at --
level (depending on the reconstruction accuracies) after 5 years of
PINGU operation.Comment: 39 pages, 21 figures. Description of Fig.3 correcte
Precision on leptonic mixing parameters at future neutrino oscillation experiments
We perform a comparison of the different future neutrino oscillation
experiments based on the achievable precision in the determination of the
fundamental parameters theta_{13} and the CP phase, delta, assuming that
theta_{13} is in the range indicated by the recent Daya Bay measurement. We
study the non-trivial dependence of the error on delta on its true value. When
matter effects are small, the largest error is found at the points where CP
violation is maximal, and the smallest at the CP conserving points. The
situation is different when matter effects are sizable. As a result of this
effect, the comparison of the physics reach of different experiments on the
basis of the CP discovery potential, as usually done, can be misleading. We
have compared various proposed super-beam, beta-beam and neutrino factory
setups on the basis of the relative precision of theta_{13} and the error on
delta. Neutrino factories, both high-energy or low-energy, outperform
alternative beam technologies. An ultimate precision on theta_{13} below 3% and
an error on delta of < 7^{\circ} at 1 sigma (1 d.o.f.) can be obtained at a
neutrino factory.Comment: Minor changes, matches version accepted in JHEP. 30 pages, 9 figure
Mass hierarchy discrimination with atmospheric neutrinos in large volume ice/water Cherenkov detectors
Large mass ice/water Cherenkov experiments, optimized to detect low energy
(1-20 GeV) atmospheric neutrinos, have the potential to discriminate between
normal and inverted neutrino mass hierarchies. The sensitivity depends on
several model and detector parameters, such as the neutrino flux profile and
normalization, the Earth density profile, the oscillation parameter
uncertainties, and the detector effective mass and resolution. A proper
evaluation of the mass hierarchy discrimination power requires a robust
statistical approach. In this work, the Toy Monte Carlo, based on an extended
unbinned likelihood ratio test statistic, was used. The effect of each model
and detector parameter, as well as the required detector exposure, was then
studied. While uncertainties on the Earth density and atmospheric neutrino flux
profiles were found to have a minor impact on the mass hierarchy
discrimination, the flux normalization, as well as some of the oscillation
parameter (\Delta m^2_{31}, \theta_{13}, \theta_{23}, and \delta_{CP})
uncertainties and correlations resulted critical. Finally, the minimum required
detector exposure, the optimization of the low energy threshold, and the
detector resolutions were also investigated.Comment: 23 pages, 16 figure
Echinoderms have bilateral tendencies
Echinoderms take many forms of symmetry. Pentameral symmetry is the major
form and the other forms are derived from it. However, the ancestors of
echinoderms, which originated from Cambrian period, were believed to be
bilaterians. Echinoderm larvae are bilateral during their early development.
During embryonic development of starfish and sea urchins, the position and the
developmental sequence of each arm are fixed, implying an auxological
anterior/posterior axis. Starfish also possess the Hox gene cluster, which
controls symmetrical development. Overall, echinoderms are thought to have a
bilateral developmental mechanism and process. In this article, we focused on
adult starfish behaviors to corroborate its bilateral tendency. We weighed
their central disk and each arm to measure the position of the center of
gravity. We then studied their turning-over behavior, crawling behavior and
fleeing behavior statistically to obtain the center of frequency of each
behavior. By joining the center of gravity and each center of frequency, we
obtained three behavioral symmetric planes. These behavioral bilateral
tendencies might be related to the A/P axis during the embryonic development of
the starfish. It is very likely that the adult starfish is, to some extent,
bilaterian because it displays some bilateral propensity and has a definite
behavioral symmetric plane. The remainder of bilateral symmetry may have
benefited echinoderms during their evolution from the Cambrian period to the
present
Mechanisms Underlying the Antiarrhythmic Effect of ARumenamide-787 in Experimental Models of the J Wave Syndromes and Hypothermia
BACKGROUND: Brugada (BrS) and early repolarization syndromes (ERS), the so-called J wave syndromes (JWS), are associated with life-threatening ventricular arrhythmias. Pharmacologic approaches to therapy are currently limited. In this study, we examine the effects of ARumenamide-787 (AR-787) to suppress the electrocardiographic and arrhythmic manifestations of JWS and hypothermia.
METHODS: We studied the effects of AR-787 on INa and IKr in HEK-293 cells stably expressing the α- and β1-subunits of the cardiac (NaV1.5) sodium channel and hERG channel, respectively. In addition, we studied its effect on Ito, INa and ICa in dissociated canine ventricular myocytes along with action potentials and ECG from coronary-perfused right (RV) and left (LV) ventricular wedge preparations. The Ito agonist, NS5806 (5-10 μM), ICa blocker, verapamil (2.5 μM), and INa blocker, ajmaline (2.5 μM), were used to mimic the genetic defects associated with JWS and to induce the electrocardiographic and arrhythmic manifestations of JWS (prominent J waves/ST segment elevation, phase 2 reentry and polymorphic VT/VF) in canine ventricular wedge preparations.
RESULTS: AR-787 (1, 10 and 50 μM) exerted pleiotropic effects on cardiac ion channels. The predominant effect was inhibition of the transient outward current (Ito) and enhancement of the sodium channel current (INa), with lesser effects to inhibit IKr and augment calcium channel current (ICa). AR-787 diminished the electrocardiographic J wave and prevented and/or suppressed all arrhythmic activity in canine RV and LV experimental models of BrS, ERS and hypothermia.
CONCLUSIONS: Our findings point to AR-787 as promising candidate for the pharmacologic treatment of JWS and hypothermia
Shedding light on dark chemical matter: the discovery of a SARS-CoV-2 Mpro main protease inhibitor through Intensive virtual screening and in vitro evaluation
The development of specific antiviral therapies targeting SARS-CoV-2 remains fundamental because of the continued high incidence of COVID-19 and limited accessibility to antivirals in some countries. In this context, dark chemical matter (DCM), a set of drug-like compounds with outstanding selectivity profiles that have never shown bioactivity despite being extensively assayed, appears to be an excellent starting point for drug development. Accordingly, in this study, we performed a high-throughput screening to identify inhibitors of the SARS-CoV-2 main protease (Mpro) using DCM compounds as ligands. Multiple receptors and two different docking scoring functions were employed to identify the best molecular docking poses. The selected structures were subjected to extensive conventional and Gaussian accelerated molecular dynamics. From the results, four compounds with the best molecular behavior and binding energy were selected for experimental testing, one of which presented inhibitory activity with a Ki value of 48 ± 5 µM. Through virtual screening, we identified a significant starting point for drug development, shedding new light on DCM compounds.Peer ReviewedPostprint (published version
- …