1,653 research outputs found

    Author Correction: A HIF independent oxygen-sensitive pathway for controlling cholesterol synthesis (Nature Communications, (2023), 14, 1, (4816), 10.1038/s41467-023-40541-1)

    Get PDF
    \ua9 The Author(s) 2024.The original version of this Article contained errors in Figs. 2, 3, and 5. In the original Fig. 2e, the flow cytometry panel on the right (labelled “StD (24 hr) followed by 1% O2 (~16 hr)”), was inadvertently duplicated from the panel on the left (labelled “Concurrent StD and 1% O2 (~24 hr)”). In the original Fig. 3a, the flow cytometry panel on the right (labelled “Roxadustat”), was inadvertently duplicated from the panel on the left (labelled “DMOG”). In the original Fig. 5c, the labels did not properly communicate that both panels come from the same experiment and have the same controls. The following sentence has been added to the end of the legend for Fig. 5c: “The data depicted in the left and right panels originated from the same experiment and as such the control plots are the same in both.” Figures 2, 3, and 5 have been corrected in both the PDF and HTML versions of the Article. The original version of the Supplementary Information associated with this Article contained an error in Supplementary Fig. 5. In the original Supplementary Fig. 5a, the labels did not properly communicate that all three panels come from the same experiment and have the same control. The following sentence has been added to the end of the legend for Supplementary Fig. 5a: “The data depicted in the three panels originated from the same experiment and as such the control plot is the same in all panels”. The HTML has been updated to include a corrected version of the Supplementary Information

    Current research into brain barriers and the delivery of therapeutics for neurological diseases: a report on CNS barrier congress London, UK, 2017.

    Get PDF
    This is a report on the CNS barrier congress held in London, UK, March 22-23rd 2017 and sponsored by Kisaco Research Ltd. The two 1-day sessions were chaired by John Greenwood and Margareta Hammarlund-Udenaes, respectively, and each session ended with a discussion led by the chair. Speakers consisted of invited academic researchers studying the brain barriers in relation to neurological diseases and industry researchers studying new methods to deliver therapeutics to treat neurological diseases. We include here brief reports from the speakers

    HFE gene polymorphism defined by sequence based typing of the Brazilian population and a standardized nomenclature for HFE allele sequences

    Get PDF
    The HFE molecule controls iron uptake from gut, and defects in the molecule have been associated with iron overload, particularly in hereditary hemochromatosis. The HFE gene including both coding and boundary intronic regions were sequenced in 304 Brazilian individuals, encompassing healthy individuals and patients exhibiting hereditary or acquired iron overload. Six sites of variation were detected: i) H63D C > G in exon 2, ii) IVS2 (+4) T > C in intron 2, iii) a C > G transversion in intron 3, iv) C282Y G > A in exon 4, v) IVS4 (-44) T > C in intron 4, and vi) a new Guanine deletion (G > del) in intron 5, which were used for haplotype inference. Nine HFE alleles were detected and six of these were officially named on the basis of the HLA Nomenclature, defined by the WHO Nomenclature Committee for Factors of the HLA System, and published via the IPD-IMGT/HLA website. Four alleles, HFE*001, 002, 003 and 004 exhibited variation within their exon sequences

    AMP-dependent kinase/mammalian target of rapamycin complex 1 signaling in T-cell acute lymphoblastic leukemia: therapeutic implications.

    Get PDF
    The mammalian target of rapamycin (mTOR) serine/threonine kinase is the catalytic subunit of two multi-protein complexes, referred to as mTORC1 and mTORC2. Signaling downstream of mTORC1 has a critical role in leukemic cell biology by controlling mRNA translation of genes involved in both cell survival and proliferation. mTORC1 activity can be downmodulated by upregulating the liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway. Here, we have explored the therapeutic potential of the anti-diabetic drug, metformin (an LKB1/AMPK activator), against both T-cell acute lymphoblastic leukemia (T-ALL) cell lines and primary samples from T-ALL patients displaying mTORC1 activation. Metformin affected T-ALL cell viability by inducing autophagy and apoptosis. However, it was much less toxic against proliferating CD4þ T-lymphocytes from healthy donors. Western blot analysis demonstrated dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cells treated with metformin. Remarkably, metformin targeted the side population of T-ALL cell lines as well as a putative leukemia-initiating cell subpopulation (CD34þ/CD7/CD4) in patient samples. In conclusion, metformin displayed a remarkable anti-leukemic activity, which emphasizes future development of LKB1/AMPK activators as clinical candidates for therapy in T-ALL. Leukemia (2012) 26, 91–100; doi:10.1038/leu.2011.269; published online 4 October 201

    Gene sequence variations of the platelet P2Y12 receptor are associated with coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The platelet P2Y<sub>12 </sub>receptor plays a key role in platelet activation. The H2 haplotype of the P2Y<sub>12 </sub>receptor gene (<it>P2RY12</it>) has been found to be associated with maximal aggregation response to adenosine diphosphate (ADP) and with increased risk for peripheral arterial disease. No data are available on its association with coronary artery disease (CAD).</p> <p>Methods </p> <p>The H2 haplotype of the <it>P2RY12 </it>was determined in 1378 unrelated patients of both sexes selected according to the presence of significant coronary artery disease (CAD group) or having normal coronary angiogram at cardiac catheterization (CAD-free group). Significant coronary artery disease was angiographically determined, and was defined as a greater than 50% visually estimated luminal diameter stenosis in at least one major epicardial coronary artery.</p> <p>Results</p> <p>In the studied population 71.9% had CAD (n = 991) and 28.1% had normal coronary angiogram (n = 387). H2 haplotype carriers were more frequent in the CAD group (p = 0.03, OR = 1.36, 95%CI = 1.02–1.82). The H2 haplotype was significantly associated with CAD in non-smokers (p = 0.007, OR = 1.83 95%CI = 1.17–2.87), but not in smokers. The association remained significant after adjustment for other covariates (age, triglycerides, HDL, hypertension, diabetes) by multivariate logistic regression (p = 0.004, OR = 2.32 95%CI = 1.30–4.15).</p> <p>Conclusion</p> <p>Gene sequence variations of the P2Y<sub>12 </sub>receptor gene are associated with the presence of significant CAD, particularly in non-smoking individuals.</p
    corecore