76 research outputs found

    Genomic epidemiology of Streptococcus dysgalactiae subsp. equisimilis strains causing invasive disease in Norway during 2018

    Get PDF
    Background: Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an emerging global pathogen, yet the epidemiology and population genetics of SDSE species have not been extensively characterized. Methods: We carried out whole genome sequencing to characterize 274 SDSE isolates causing bloodstream infections obtained through national surveillance program in 2018. We conducted multilocus sequence typing (MLST), emm-typing, core genome phylogeny, as well as investigated key features associated with virulence. Moreover, comparison to SDSE from other geographic regions were performed in order to gain more insight in the evolutionary dynamics in SDSE. Results: The phylogenetic analysis indicated a substantial diversity of emm-types and sequence types (STs). Briefly, 17 emm-types and 58 STs were identified that formed 10 clonal complexes (CCs). The predominant ST-types were ST20 (20%), ST17 (17%), and ST29 (11%). While CC17 and CC29 clades showed a substantial heterogeneity with well-separated emm-associated subclades, the CC20 clade harboring the stG62647 emm-type was more homogenous and the most prevalent in the present study. Moreover, we observed notable differences in the distribution of clades within Norway, as well as several disseminated CCs and also distinct geographic variations when compared to data from other countries. We also revealed extensive intra-species recombination events involving surface exposed virulence factors, including the emm gene important for phylogenetic profiling. Conclusion: Recombination events involving the emm as well as other virulence genes in SDSE, are important mechanisms in shaping the genetic variability in the SDSE population, potentially offering selective advantages to certain lineages. The enhanced phylogenetic resolution offered by whole genome sequencing is necessary to identify and delimitate outbreaks, monitor and properly characterize emerging strains, as well as elucidate bacterial population dynamics.publishedVersio

    Livestock-Associated MRSA CC1 in Norway; Introduction to Pig Farms, Zoonotic Transmission, and Eradication

    Get PDF
    Farm animals have been identified as an emerging reservoir for transmission of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) to humans. The low incidence of MRSA in humans and farm animals in Norway has led to the implementation of a national strategy of surveillance and control of LA-MRSA aiming to prevent livestock becoming a domestic source of MRSA to humans. In 2015, MRSA clonal complex 1 spa-type t177 was identified in nine Norwegian pig herds in two neighboring counties. An outbreak investigation was undertaken, and measures of control through eradication were imposed. We performed a register-based cohort study including pig herds and MRSA-positive persons in Norway between 2008 and 2016 to investigate the livestock-association of MRSA CC1, the transmission of the outbreak strain to humans before and after control measures, and the effect of control measures imposed. Data from the Norwegian Surveillance System of Communicable Diseases were merged with data collected through outbreak investigations for LA-MRSA, the National Registry and the Norwegian Register for Health Personnel. Whole-genome sequencing was performed on isolates from livestock and humans identified through contact tracing, in addition to t177 and t127 isolates diagnosed in persons in the same counties. It is likely that a farm worker introduced MRSA CC1 to a sow farm, and further transmission to eight fattening pig farms through trade of live pigs confirmed the potential for livestock association of this MRSA type. The outbreak strain formed a distinct phylogenetic cluster which in addition to the pig farms included one sheep herd and five exposed persons. None of the investigated isolates from possible cases without direct contact to the MRSA positive farms were phylogenetically related to the outbreak strain. Moreover, isolates of t177 or t127 from healthcare and community-acquired cases were not closely related to the outbreak cluster. Eradication measures imposed were effective in eliminating MRSA t177 from the positive pig holdings, and the outbreak strain was not detected in the national pig population or in persons from these counties after control measures

    Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.We sequenced the genomes of 3,615 strains of serotype Emm protein 1 (M1) group A Streptococcus to unravel the nature and timing of molecular events contributing to the emergence, dissemination, and genetic diversification of an unusually virulent clone that now causes epidemic human infections worldwide. We discovered that the contemporary epidemic clone emerged in stepwise fashion from a precursor cell that first contained the phage encoding an extracellular DNase virulence factor (streptococcal DNase D2, SdaD2) and subsequently acquired the phage encoding the SpeA1 variant of the streptococcal pyrogenic exotoxin A superantigen. The SpeA2 toxin variant evolved from SpeA1 by a single-nucleotide change in the M1 progenitor strain before acquisition by horizontal gene transfer of a large chromosomal region encoding secreted toxins NAD(+)-glycohydrolase and streptolysin O. Acquisition of this 36-kb region in the early 1980s into just one cell containing the phage-encoded sdaD2 and speA2 genes was the final major molecular event preceding the emergence and rapid intercontinental spread of the contemporary epidemic clone. Thus, we resolve a decades-old controversy about the type and sequence of genomic alterations that produced this explosive epidemic. Analysis of comprehensive, population-based contemporary invasive strains from seven countries identified strong patterns of temporal population structure. Compared with a preepidemic reference strain, the contemporary clone is significantly more virulent in nonhuman primate models of pharyngitis and necrotizing fasciitis. A key finding is that the molecular evolutionary events transpiring in just one bacterial cell ultimately have produced millions of human infections worldwide.Knut and Alice Wallenberg Foundation Swedish Research Council Houston Methodist Hospital Fondren Foundatio

    Emergence and dissemination of antimicrobial resistance in Escherichia coli causing bloodstream infections in Norway in 2002-17: a nationwide, longitudinal, microbial population genomic study.

    Get PDF
    BACKGROUND: The clonal diversity underpinning trends in multidrug resistant Escherichia coli causing bloodstream infections remains uncertain. We aimed to determine the contribution of individual clones to resistance over time, using large-scale genomics-based molecular epidemiology. METHODS: This was a longitudinal, E coli population, genomic, cohort study that sampled isolates from 22 512 E coli bloodstream infections included in the Norwegian surveillance programme on resistant microbes (NORM) from 2002 to 2017. 15 of 22 laboratories were able to share their isolates, and the first 22·5% of isolates from each year were requested. We used whole genome sequencing to infer the population structure (PopPUNK), and we investigated the clade composition of the dominant multidrug resistant clonal complex (CC)131 using genetic markers previously reported for sequence type (ST)131, effective population size (BEAST), and presence of determinants of antimicrobial resistance (ARIBA, PointFinder, and ResFinder databases) over time. We compared these features between the 2002-10 and 2011-17 time periods. We also compared our results with those of a longitudinal study from the UK done between 2001 and 2011. FINDINGS: Of the 3500 isolates requested from the participating laboratories, 3397 (97·1%) were received, of which 3254 (95·8%) were successfully sequenced and included in the analysis. A significant increase in the number of multidrug resistant CC131 isolates from 71 (5·6%) of 1277 in 2002-10 to 207 (10·5%) of 1977 in 2011-17 (p<0·0001), was the largest clonal expansion. CC131 was the most common clone in extended-spectrum β-lactamase (ESBL)-positive isolates (75 [58·6%] of 128) and fluoroquinolone non-susceptible isolates (148 [39·2%] of 378). Within CC131, clade A increased in prevalence from 2002, whereas the global multidrug resistant clade C2 was not observed until 2007. Multiple de-novo acquisitions of both blaCTX-M ESBL-encoding genes in clades A and C1 and gain of phenotypic fluoroquinolone non-susceptibility across the clade A phylogeny were observed. We estimated that exponential increases in the effective population sizes of clades A, C1, and C2 occurred in the mid-2000s, and in clade B a decade earlier. The rate of increase in the estimated effective population size of clade A (Ne=3147) was nearly ten-times that of C2 (Ne=345), with clade A over-represented in Norwegian CC131 isolates (75 [27·0%] of 278) compared with the UK study (8 [5·4%] of 147 isolates). INTERPRETATION: The early and sustained establishment of predominantly antimicrobial susceptible CC131 clade A isolates, relative to multidrug resistant clade C2 isolates, suggests that resistance is not necessary for clonal success. However, even in the low antibiotic use setting of Norway, resistance to important antimicrobial classes has rapidly been selected for in CC131 clade A isolates. This study shows the importance of genomic surveillance in uncovering the complex ecology underlying multidrug resistance dissemination and competition, which have implications for the design of strategies and interventions to control the spread of high-risk multidrug resistant clones. FUNDING: Trond Mohn Foundation, European Research Council, Marie Skłodowska-Curie Actions, and the Wellcome Trust

    Comparison of broad range 16S rDNA PCR and conventional blood culture for diagnosis of sepsis in the newborn: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early onset bacterial sepsis is a feared complication of the newborn. A large proportion of infants admitted to the Neonatal Intensive Care Unit (NICU) for suspected sepsis receive treatment with potent systemic antibiotics while a diagnostic workup is in progress. The gold standard for detecting bacterial sepsis is blood culture. However, as pathogens in blood cultures are only detected in approximately 25% of patients, the sensitivity of blood culture is suspected to be low. Therefore, the diagnosis of sepsis is often based on the development of clinical signs, in combination with laboratory tests such as a rise in C – reactive protein (CRP). Molecular assays for the detection of bacterial DNA in the blood represent possible new diagnostic tools for early identification of a bacterial cause.</p> <p>Methods</p> <p>A broad range 16S rDNA polymerase chain reaction (PCR) without preincubation was compared to conventional diagnostic work up for clinical sepsis, including BACTEC blood culture, for early determination of bacterial sepsis in the newborn. In addition, the relationship between known risk factors, clinical signs, and laboratory parameters considered in clinical sepsis in the newborn were explored.</p> <p>Results</p> <p>Forty-eight infants with suspected sepsis were included in this study. Thirty-one patients were diagnosed with sepsis, only 6 of these had a positive blood culture. 16S rDNA PCR analysis of blinded blood samples from the 48 infants revealed 10 samples positive for the presence of bacterial DNA. PCR failed to be positive in 2 samples from blood culture positive infants, and was positive in 1 sample where a diagnosis of a non-septic condition was established. Compared to blood culture the diagnosis of bacterial proven sepsis by PCR revealed a 66.7% sensitivity, 87.5% specificity, 95.4% positive and 75% negative predictive value. PCR combined with blood culture revealed bacteria in 35.1% of the patients diagnosed with sepsis. Irritability and feeding difficulties were the clinical signs most often observed in sepsis. CRP increased in the presence of bacterial infection.</p> <p>Conclusion</p> <p>There is a need for PCR as a method to quickly point out the infants with sepsis. However, uncertainty about a bacterial cause of sepsis was not reduced by the PCR result, reflecting that methodological improvements are required in order for DNA detection to replace or supplement traditional blood culture in diagnosis of bacterial sepsis.</p

    Ten years of external quality assessment (EQA) of Neisseria gonorrhoeae antimicrobial susceptibility testing in Europe elucidate high reliability of data

    Get PDF
    BACKGROUND: Confidence in any diagnostic and antimicrobial susceptibility testing data is provided by appropriate and regular quality assurance (QA) procedures. In Europe, the European Gonococcal Antimicrobial Susceptibility Programme (Euro-GASP) has been monitoring the antimicrobial susceptibility in Neisseria gonorrhoeae since 2004. Euro-GASP includes an external quality assessment (EQA) scheme as an essential component for a quality-assured laboratory-based surveillance programme. Participation in the EQA scheme enables any problems with the performed antimicrobial susceptibility testing to be identified and addressed, feeds into the curricula of laboratory training organised by the Euro-GASP network, and assesses the capacity of individual laboratories to detect emerging new, rare and increasing antimicrobial resistance phenotypes. Participant performance in the Euro-GASP EQA scheme over a 10 year period (2007 to 2016, no EQA in 2013) was evaluated. METHODS: Antimicrobial susceptibility category and MIC results from the first 5 years (2007-2011) of the Euro-GASP EQA were compared with the latter 5 years (2012-2016). These time periods were selected to assess the impact of the 2012 European Union case definitions for the reporting of antimicrobial susceptibility. RESULTS: Antimicrobial susceptibility category agreement in each year was ≥91%. Discrepancies in susceptibility categories were generally because the MICs for EQA panel isolates were on or very close to the susceptibility or resistance breakpoints. A high proportion of isolates tested over the 10 years were within one (≥90%) or two (≥97%) MIC log2 dilutions of the modal MIC, respectively. The most common method used was Etest on GC agar base. There was a shift to using breakpoints published by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) in the latter 5 years, however overall impact on the validity of results was limited, as the percentage categorical agreement and MIC concordance changed very little between the two five-year periods. CONCLUSIONS: The high level of comparability of results in this EQA scheme indicates that high quality data are produced by the Euro-GASP participants and gives confidence in susceptibility and resistance data generated by laboratories performing decentralised testing.The study was funded by the European Centre for Disease Prevention and Control (Framework Contract No. ECDC/2013/015). The funding body contributed to the design of the study, the interpretation of the data and to the writing of the manuscript.S
    corecore