1,163 research outputs found

    Stream Microbial Communities Show Resistance to Pharmaceutical Exposure

    Get PDF
    Residues of pharmaceuticals are increasingly detected in surface waters throughout the world. In four streams in Baltimore, Maryland, USA, we detected analgesics, stimulants, antihistamines, and antibiotics using passive organic samplers. We exposed biofilm communities in these streams to the common drugs caffeine, cimetidine, ciprofloxacin, and diphenhydramine. Respiration rates in the least urban stream were suppressed when exposed to these drugs, but biofilm functioning in the most urban stream was resistant to drug exposure. Exposure to the antibiotic ciprofloxacin altered bacterial community composition at all sites, with the greatest change occurring in the most urban stream. These results indicated that continuous exposure to drugs in urban streams may select for sub‐populations of highly resistant bacteria that maintain community function in response to urban contaminants

    Urban stream microbial communities show resistance to pharmaceutical exposure

    Get PDF
    Residues of pharmaceuticals are increasingly detected in surface waters throughout the world. In four streams in Baltimore, Maryland, USA, we detected analgesics, stimulants, antihistamines, and antibiotics using passive organic samplers. We exposed biofilm communities in these streams to the common drugs caffeine, cimetidine, ciprofloxacin, and diphenhydramine. Respiration rates in the least urban stream were suppressed when exposed to these drugs, but biofilm functioning in the most urban stream was resistant to drug exposure. Exposure to the antibiotic ciprofloxacin altered bacterial community composition at all sites, with the greatest change occurring in the most urban stream. These results indicated that continuous exposure to drugs in urban streams may select for sub-populations of highly resistant bacteria that maintain community function in response to urban contaminants

    Proteomic analysis of the U1 snRNP of Schizosaccharomyces pombe reveals three essential organism-specific proteins

    Get PDF
    Characterization of spliceosomal complexes in the fission yeast Schizosaccharomyces pombe revealed particles sedimenting in the range of 30–60S, exclusively containing U1 snRNA. Here, we report the tandem affinity purification (TAP) of U1-specific protein complexes. The components of the complexes were identified using (LC-MS/MS) mass spectrometry. The fission yeast U1 snRNP contains 16 proteins, including the 7 Sm snRNP core proteins. In both fission and budding yeast, the U1 snRNP contains 9 and 10 U1 specific proteins, respectively, whereas the U1 particle found in mammalian cells contains only 3. Among the U1-specific proteins in S. pombe, three are homolog to the mammalian and six to the budding yeast Saccharomyces cerevisiae U1-specific proteins, whereas three, called U1H, U1J and U1L, are proteins specific to S. pombe. Furthermore, we demonstrate that the homolog of U1-70K and the three proteins specific to S. pombe are essential for growth. We will discuss the differences between the U1 snRNPs with respect to the organism-specific proteins found in the two yeasts and the resulting effect it has on pre-mRNA splicing

    Successful Integration of Distributed Drug Discovery (D3) Components: Computational, Synthetic, and Biological Evaluation of Phenylalanine Derivatives as Potential Biofilm Inhibitors

    Get PDF
    poster abstractDistributed Drug Discovery (D3) is a multidisciplinary approach to identifying molecules that exhibit activity in the treatment of neglected diseases such as malaria, leishmaniasis, and tuberculosis as well as recalcitrant cystic fibrosis (CF) airway infections. D3 seeks to accomplish this task by combining computational chemistry, synthetic chemistry, and biological screening all within an educational framework. Recent reports suggest that D-amino acids are effective in the disassembly and inhibition of bacterial biofilms, which are important for a number of bacterial infections, including those in the CF lung. Utilizing chemical drawing software, we constructed (enumerated) target phenylalanine derivatives from commercially available benzyl halides by substitution at the α position of an amino acid scaffold. A subset of these enumerated molecules was computationally selected for synthesis based on chemical properties. These compounds were synthesized using simple, solid-phase techniques in an undergraduate organic chemistry laboratory class. The resulting racemic unnatural amino acid derivatives were then screened for activity in a biofilm assay. The results show biofilm inhibition with synthesized phenylalanine derivatives. Analysis of the results reveals a trend between lipophilicity and the degree of biofilm inhibition. These new molecules may lead to an avenue for therapy for those CF individuals suffering with bacterial lung infection. As a part of the undergraduate curriculum, this work provides the first example of D3-linked undergraduate student computational analysis, synthesis, and biological evaluation

    The Bs20x22 anti-CD20-CD22 bispecific antibody has more lymphomacidal activity than do the parent antibodies alone

    Get PDF
    Previous studies have shown that bispecific antibodies that target both CD20 and CD22 have in vivo lymphomacidal properties. We developed a CD20-CD22 bispecific antibody (Bs20x22) from anti-CD20 and the anti-CD22 monoclonal antibodies (mAb), rituximab and HB22.7, respectively. Bs20x22 was constructed using standard methods and was shown to specifically bind CD20 and CD22. In vitro cytotoxicity assays showed that Bs20x22 was three times more effective than either parent mAb alone and twice as effective as a combination of both parent mAb used at equimolar concentrations. Bs20x22 was also nearly four times more effective at inducing apoptosis than either mAb alone. Examination of the MAPK and SAPK signaling cascades revealed that Bs20x22 induced significantly more p38 phosphorylation than either mAb alone. In an in vivo human NHL xenograft model, treatment with Bs20x22 resulted in significantly greater tumor shrinkage and improved overall survival when compared to either mAb alone or treatment with a combination of HB22.7 and rituximab. The effect of the initial tumor volume was assessed by comparing the efficacy of Bs20x22 administered before xenografts grew versus treatment of established tumors; significantly, greater efficacy was found when treatment was initiated before tumors could become established

    Interim 2017/18 influenza seasonal vaccine effectiveness: Combined results from five European studies

    Get PDF
    Between September 2017 and February 2018, influenza A(H1N1)pdm09, A(H3N2) and B viruses (mainly B/Yamagata, not included in 2017/18 trivalent vaccines) co-circulated in Europe. Interim results from five European studies indicate that, in all age groups, 2017/18 influenza vaccine effectiveness was 25 to 52% against any influenza, 55 to 68% against influenza A(H1N1)pdm09, -42 to 7% against influenza A(H3N2) and 36 to 54% against influenza B. 2017/18 influenza vaccine should be promoted where influenza still circulates

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Search for long-lived heavy neutral leptons with displaced vertices in proton-proton collisions at s \sqrt{\mathrm{s}} =13 TeV

    Get PDF

    Search for flavor-changing neutral current interactions of the top quark and the Higgs boson decaying to a bottom quark-antiquark pair at s√ = 13 TeV

    Get PDF
    A search for flavor-changing neutral current interactions of the top quark (t) and the Higgs boson (H) is presented. The search is based on a data sample corresponding to an integrated luminosity of 137 fb−1 recorded by the CMS experiment at the LHC in proton-proton collisions at s√ = 13 TeV. Events containing exactly one lepton (muon or electron) and at least three jets, among which at least two are identified as originating from the hadronization of a bottom quark, are analyzed. A set of deep neural networks is used for kinematic event reconstruction, while boosted decision trees distinguish the signal from the background events. No significant excess over the background predictions is observed, and upper limits on the signal production cross sections are extracted. These limits are interpreted in terms of top quark decay branching fractions (B ) to the Higgs boson and an up (u) or a charm quark (c). Assuming one nonvanishing extra coupling at a time, the observed (expected) upper limits at 95% confidence level are B (t → Hu) < 0.079 (0.11)% and B (t → Hc) < 0.094 (0.086)%

    Search for a vector-like quark Tâ€Č → tH via the diphoton decay mode of the Higgs boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search for the electroweak production of a vector-like quark Tâ€Č, decaying to a top quark and a Higgs boson is presented. The search is based on a sample of proton-proton collision events recorded at the LHC at = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. This is the first Tâ€Č search that exploits the Higgs boson decay to a pair of photons. For narrow isospin singlet Tâ€Č states with masses up to 1.1 TeV, the excellent diphoton invariant mass resolution of 1–2% results in an increased sensitivity compared to previous searches based on the same production mechanism. The electroweak production of a Tâ€Č quark with mass up to 960 GeV is excluded at 95% confidence level, assuming a coupling strength ÎșT = 0.25 and a relative decay width Γ/MTâ€Č < 5%
    • 

    corecore