110 research outputs found

    The non-detection of oscillations in Procyon by MOST: is it really a surprise?

    Full text link
    We argue that the non-detection of oscillations in Procyon by the MOST satellite reported by Matthews et al. (2004) is fully consistent with published ground-based velocity observations of this star. We also examine the claims that the MOST observations represent the best photometric precision so far reported in the literature by about an order of magnitude and are the most sensitive data set for asteroseismology available for any star other than the Sun. These statements are not correct, with the most notable exceptions being observations of oscillations in alpha Cen A that are far superior. We further disagree that the hump of excess power seen repeatedly from velocity observations of Procyon can be explained as an artefact caused by gaps in the data. The MOST observations failed to reveal oscillations clearly because their noise level is too high, possibly from scattered Earthlight in the instrument. We did find an excess of strong peaks in the MOST amplitude spectrum that is inconsistent with a simple noise source such as granulation, and may perhaps indicate oscillations at roughly the expected level.Comment: 6 pages, accepted for publication in A&A Letter

    Asteroseismology of Procyon A with SARG at TNG

    Full text link
    We present high precision radial velocity measurements on the F5 IV star alpha CMi obtained by the SARG spectrograph at TNG (Telescopio Nazionale Galileo) exploiting the iodine cell technique. The time series of about 950 spectra of Procyon A taken during 6 observation nights are affected by an individual error of 1.3 m/s. Thanks to the iodine cell technique, the spectrograph contribution to the Doppler shift measurement error is quite negligible and our error is dominated by the photon statistics Brown et al 1994. An excess of power between 0.5 and 1.5 mHz, detected also by Martic et al. 2004 has been found. We determined a large separation frequency Delta nu0 = 56\pm 2 microHz, consistent with both theoretical estimates Chaboyer et al. 1999 and previous observations Martic et al. 2004.Comment: 4 pages, 5 figures, accepted to be published in A&A Letter

    Evidence for solar-like oscillations in beta Hydri

    Get PDF
    We have made a clear detection of excess power, providing strong evidence for solar-like oscillations in the G2 subgiant beta Hyi. We observed this star over five nights with the UCLES echelle spectrograph on the 3.9-m Anglo-Australian Telescope, using an iodine absorption cell as a velocity reference. The time series of 1196 velocity measurements shows an rms scatter of 3.30 m/s, and the mean noise level in the amplitude spectrum at frequencies above 0.5 mHz is 0.11 m/s. We see a clear excess of power centred at 1.0 mHz, with peak amplitudes of about 0.5 m/s, in agreement with expectations for this star. Fitting the asymptotic relation to the power spectrum indicates the most likely value for the large separation is 56.2 microHz, also in good agreement with the known properties of beta Hyi.Comment: Accepted by ApJ Letter

    Precise radial velocities of giant stars. IV. A correlation between surface gravity and radial velocity variation and a statistical investigation of companion properties

    Get PDF
    Since 1999, we have been conducting a radial velocity survey of 179 K giants using the CAT at UCO/Lick observatory. At present ~20-100 measurements have been collected per star with a precision of 5 to 8 m/s. Of the stars monitored, 145 (80%) show radial velocity (RV) variations at a level >20 m/s, of which 43 exhibit significant periodicities. Our aim is to investigate possible mechanism(s) that cause these observed RV variations. We intend to test whether these variations are intrinsic in nature, or possibly induced by companions, or both. In addition, we aim to characterise the parameters of these companions. A relation between log g and the amplitude of the RV variations is investigated for all stars in the sample. Furthermore, the hypothesis that all periodic RV variations are caused by companions is investigated by comparing their inferred orbital statistics with the statistics of companions around main sequence stars. A strong relation is found between the amplitude of the RV variations and log g in K giant stars, as suggested earlier by Hatzes & Cochran (1998). However, most of the stars exhibiting periodic variations are located above this relation. These RV variations can be split in a periodic component which is not correlated with log g and a random residual part which does correlate with log g. Compared to main-sequence stars, K giants frequently exhibit periodic RV variations. Interpreting these RV variations as being caused by companions, the orbital param eters are different from the companions orbiting dwarfs. Intrinsic mechanisms play an important role in producing RV variations in K giants stars, as suggested by their dependence on log g. However, it appears that periodic RV variations are additional to these intrinsic variations, consistent with them being caused by companions.Comment: 10 pages, accepted by A&

    Detection of Solar-like Oscillations in the G7 Giant Star xi Hya

    Get PDF
    We report the firm discovery of solar-like oscillations in a giant star. We monitored the star xi Hya (G7III) continuously during one month with the CORALIE spectrograph attached to the 1.2m Swiss Euler telescope. The 433 high-precision radial-velocity measurements clearly reveal multiple oscillation frequencies in the range 50 - 130 uHz, corresponding to periods between 2.0 and 5.5 hours. The amplitudes of the strongest modes are slightly smaller than 2 m/s. Current model calculations are compatible with the detected modes.Comment: 4 pages, 4 figures, accepted for publication as a letter in A&

    p-mode frequencies in solar-like stars : I. Procyon A

    Full text link
    As a part of an on-going program to explore the signature of p-modes in solar-like stars by means of high-resolution absorption lines pectroscopy, we have studied four stars (alfaCMi, etaCas A, zetaHer A and betaVir). We present here new results from two-site observations of Procyon A acquired over twelve nights in 1999. Oscillation frequencies for l=1 and l=0 (or 2) p-modes are detected in the power spectra of these Doppler shift measurements. A frequency analysis points out the dificulties of the classical asymptotic theory in representing the p-mode spectrum of Procyon A

    Asteroseismology of Procyon with SOPHIE

    Full text link
    This paper reports a 9-night asteroseismic observation program conducted in January 2007 with the new spectrometer Sophie at the OHP 193-cm telescope, on the F5 IV-V target Procyon A. This first asteroseismic program with Sophie was intended to test the performance of the instrument with a bright but demanding asteroseismic target and was part of a multisite network. The Sophie spectra have been reduced with the data reduction software provided by OHP. The Procyon asteroseismic data were then analyzed with statistical tools. The asymptotic analysis has been conducted considering possible curvature in the echelle diagram analysis. These observations have proven the efficient performance of Sophie used as an asteroseismometer, and succeed in a clear detection of the large spacing. An \'echelle diagram based on the 54-μ\muHz spacing shows clear ridges. Identification of the peaks exhibits large spacings varying from about 52 μ\muHz to 56 μ\muHz.Comment: 7 pages, 7 figure

    Oscillations in Procyon A: First results from a multi-site campaign

    Full text link
    Procyon A is a bright F5IV star in a binary system. Although the distance, mass and angular diameter of this star are all known with high precision, the exact evolutionary state is still unclear. Evolutionary tracks with different ages and different mass fractions of hydrogen in the core pass, within the errors, through the observed position of Procyon A in the Hertzsprung-Russell diagram. For more than 15 years several different groups have studied the solar-like oscillations in Procyon A to determine its evolutionary state. Although several studies independently detected power excess in the periodogram, there is no agreement on the actual oscillation frequencies yet. This is probably due to either insufficient high-quality data (i.e., aliasing) or due to intrinsic properties of the star (i.e., short mode lifetimes). Now a spectroscopic multi-site campaign using 10 telescopes world-wide (minimizing aliasing effects) with a total time span of nearly 4 weeks (increase the frequency resolution) is performed to identify frequencies in this star and finally determine its properties and evolutionary state.Comment: 7 pages, 4 figures to be published in the proceedings of HELAS II International Conference: Helioseismology, Asteroseismology and MHD Connections published in the Journal of Physics: Conference Series. High resolution colour figures can be provided on reques

    SOPHIE+: First results of an octagonal-section fiber for high-precision radial velocity measurements

    Full text link
    High-precision spectrographs play a key role in exoplanet searches and Doppler asteroseismology using the radial velocity technique. The 1 m/s level of precision requires very high stability and uniformity of the illumination of the spectrograph. In fiber-fed spectrographs such as SOPHIE, the fiber-link scrambling properties are one of the main conditions for high precision. To significantly improve the radial velocity precision of the SOPHIE spectrograph, which was limited to 5-6 m/s, we implemented a piece of octagonal-section fiber in the fiber link. We present here the scientific validation of the upgrade of this instrument, demonstrating a real improvement. The upgraded instrument, renamed SOPHIE+, reaches radial velocity precision in the range of 1-2 m/s. It is now fully efficient for the detection of low-mass exoplanets down to 5-10 Earth mass and for the identification of acoustic modes down to a few tens of cm/s.Comment: 12 pages, 11 figures, accepted in Astronomy and Astrophysic

    Asteroseismology of Solar-type Stars with Kepler I: Data Analysis

    Full text link
    We report on the first asteroseismic analysis of solar-type stars observed by Kepler. Observations of three G-type stars, made at one-minute cadence during the first 33.5d of science operations, reveal high signal-to-noise solar-like oscillation spectra in all three stars: About 20 modes of oscillation can clearly be distinguished in each star. We discuss the appearance of the oscillation spectra, including the presence of a possible signature of faculae, and the presence of mixed modes in one of the three stars.Comment: 5 pages, 4 figure, submitted to Astronomische Nachrichte
    corecore