9 research outputs found

    Chronodisruption and Ambulatory Circadian Monitoring in Cancer Patients: Beyond the Body Clock

    Get PDF
    Purpose of Review: Circadian rhythms impose daily rhythms a remarkable variety of metabolic and physiological functions, such as cell proliferation, inflammation, and DNA damage response. Accumulating epidemiological and genetic evidence indicates that circadian rhythms’ disruption may be linked to cancer. The integration of circadian biology into cancer research may offer new options for increasing cancer treatment effectiveness and would encompass the prevention, diagnosis, and treatment of this disease. Recent Findings: In recent years, there has been a significant development and use of multi-modal sensors to monitor physical activity, sleep, and circadian rhythms, allowing, for the very first time, scaling accurate sleep monitoring to epidemiological research linking sleep patterns to disease, and wellness applications providing new potential applications. Summary: This review highlights the role of circadian clock in tumorigenesis, cancer hallmarks and introduces the state-of-the-art in sleep-monitoring technologies, discussing the eventual application of insights in clinical settings and cancer research.publishersversionpublishe

    Chronodisruption and Ambulatory Circadian Monitoring in Cancer Patients: Beyond the Body Clock.

    Get PDF
    Purpose of Review Circadian rhythms impose daily rhythms a remarkable variety of metabolic and physiological functions, such as cell proliferation, infammation, and DNA damage response. Accumulating epidemiological and genetic evidence indicates that circadian rhythms’ disruption may be linked to cancer. The integration of circadian biology into cancer research may ofer new options for increasing cancer treatment efectiveness and would encompass the prevention, diagnosis, and treatment of this disease. Recent Findings In recent years, there has been a signifcant development and use of multi-modal sensors to monitor physical activity, sleep, and circadian rhythms, allowing, for the very frst time, scaling accurate sleep monitoring to epidemiological research linking sleep patterns to disease, and wellness applications providing new potential applications. Summary This review highlights the role of circadian clock in tumorigenesis, cancer hallmarks and introduces the stateof-the-art in sleep-monitoring technologies, discussing the eventual application of insights in clinical settings and cancer research.post-print1077 K

    Chronodisruption and Ambulatory Circadian Monitoring in Cancer Patients: Beyond the Body Clock

    Full text link
    Purpose of Review: Circadian rhythms impose daily rhythms a remarkable variety of metabolic and physiological functions, such as cell proliferation, inflammation, and DNA damage response. Accumulating epidemiological and genetic evidence indicates that circadian rhythms’ disruption may be linked to cancer. The integration of circadian biology into cancer research may offer new options for increasing cancer treatment effectiveness and would encompass the prevention, diagnosis, and treatment of this disease. Recent Findings: In recent years, there has been a significant development and use of multi-modal sensors to monitor physical activity, sleep, and circadian rhythms, allowing, for the very first time, scaling accurate sleep monitoring to epidemiological research linking sleep patterns to disease, and wellness applications providing new potential applications. Summary: This review highlights the role of circadian clock in tumorigenesis, cancer hallmarks and introduces the state-of-the-art in sleep-monitoring technologies, discussing the eventual application of insights in clinical settings and cancer researchThis work was supported in part by CLARIFY project, within European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 875160, Instituto de Fomento de la Región de Murcia (INFO) and the European Regional Development Fund (FEDER

    Combining of MASW and GPR Imaging and Hydrogeological Surveys for the Groundwater Resource Evaluation in a Coastal Urban Area in Southern Spain

    Get PDF
    This paper conceptualizes and evaluates the groundwater resource in a coastal urban area hydrologically influenced by peri-urban irrigation agriculture. Adra town in southern Spain was the case study chosen to evaluate the groundwater resource contributed from the northern steep urban sector (NSUS) to the southern flat urban sector (SFUS), which belongs to the Adra River Delta Groundwater Body (ARDGB). The methodology included (1) geological and hydrogeological data compilation; (2) thirteen Multichannel Analysis of Surface Waves (MASW), and eight Ground Penetrating Radar (GPR) profiles to define shallow geological structures and some hydrogeological features; (3) hydrogeological surveys for aquifer hydraulic definition; (4) conceptualization of the hydrogeological functioning; and (5) the NSUS groundwater resource evaluation. All findings were integrated to prepare a 1:5000 scale hydrogeological map and cross-sections. Ten hydrogeological formations were defined, four of them (Paleozoic weathered bedrock, Pleistocene littoral facies, Holocene colluvial, and anthropogenic filling) in the NSUS contributing to the SFUS. The NSUS groundwater discharge and recharge are, respectively, around 0.28 Mm3 year−1 and 0.31 Mm3 year−1, and the actual groundwater storage is around 0.47 Mm3. The groundwater renewability is high enough to guarantee a durable small exploitation for specific current and future urban water uses which can alleviate the pressure on the ARDGB

    Physics of the HL-LHC, and perspectives at the HE-LH: report from working group 4: opportunities in flavour physics at the HL-LHC and HE-LHC

    Get PDF
    Motivated by the success of the flavour physics programme carried out over the last decade at the Large Hadron Collider (LHC), we characterize in detail the physics potential of its High-Luminosity and High-Energy upgrades in this domain of physics. We document the extraordinary breadth of the HL/HE-LHC programme enabled by a putative Upgrade II of the dedicated flavour physics experiment LHCb and the evolution of the established flavour physics role of the ATLAS and CMS general purpose experiments. We connect the dedicated flavour physics programme to studies of the top quark, Higgs boson, and direct high-pT searches for new particles and force carriers. We discuss the complementarity of their discovery potential for physics beyond the Standard Model, affirming the necessity to fully exploit the LHC’s flavour physics potential throughout its upgrade eras

    Potential damage and losses in a repeat of the 1910 Adra (Southern Spain) earthquake

    Get PDF
    The town of Adra (Almeria Province, South-Eastern Spain) has been seriously affected by historical damaging earthquakes in 1487, 1522, two in 1804 and in 1910 with epicentres offshore in the Alboran Sea that reached onshore an estimated maximum intensity of VIII, IX, VIII, VIII–IX and VII–VIII, respectively. Additionally, in the instrumental period, several seismic series near the city affected it with moderate structural damages like the recent one of 1993–1994, when two main earthquakes of magnitude 5.0 and 4.9 cause serious damage in mid-rise reinforced concrete buildings sited on soft soils. Consequently, the town can be affected by moderate to destructive earthquakes, so this paper provides an initial assessment of the potential impact and the consequences (in terms of structural damage, economic and human losses) if the 1910 Adra earthquake hit the city again. The results point out that buildings damage are mainly concentrated in the soft soils areas of the city and that the non-engineered buildings, especially the oldest one, have the highest vulnerability, and therefore, the structural damage is higher, while seismically designed structures show a better behaviour showing less damage. Additionally, mid- and high-rise buildings have more extensive damage than low-rise buildings. Besides, the reinforced concrete buildings with waffled-slab floors, built previously to the first Spanish seismic code (NCSE-94), show, also, important damage. In summary, we have obtained that 474 ± 160 and 973 ± 78 buildings will be affected by complete and extensive damage, respectively, that is around 40% of the buildings in the city.The authors wish to acknowledge the support of the Spanish research Projects CGL2011-30187-C02-02, BEST/2012/173, CGL2016-77688-R (AEI/FEDER,UE) and AICO/2016/098

    Opportunities in Flavour Physics at the HL-LHC and HE-LHC

    No full text
    Motivated by the success of the flavour physics programme carried out over the last decade at the Large Hadron Collider (LHC), we characterize in detail the physics potential of its High-Luminosity and High-Energy upgrades in this domain of physics. We document the extraordinary breadth of the HL/HE-LHC programme enabled by a putative Upgrade II of the dedicated flavour physics experiment LHCb and the evolution of the established flavour physics role of the ATLAS and CMS general purpose experiments. We connect the dedicated flavour physics programme to studies of the top quark, Higgs boson, and direct high-pTp_T searches for new particles and force carriers. We discuss the complementarity of their discovery potential for physics beyond the Standard Model, affirming the necessity to fully exploit the LHC's flavour physics potential throughout its upgrade eras

    Opportunities in Flavour Physics at the HL-LHC and HE-LHC

    No full text
    Motivated by the success of the flavour physics programme carried out over the last decade at the Large Hadron Collider (LHC), we characterize in detail the physics potential of its High-Luminosity and High-Energy upgrades in this domain of physics. We document the extraordinary breadth of the HL/HE-LHC programme enabled by a putative Upgrade II of the dedicated flavour physics experiment LHCb and the evolution of the established flavour physics role of the ATLAS and CMS general purpose experiments. We connect the dedicated flavour physics programme to studies of the top quark, Higgs boson, and direct high-pTp_T searches for new particles and force carriers. We discuss the complementarity of their discovery potential for physics beyond the Standard Model, affirming the necessity to fully exploit the LHC's flavour physics potential throughout its upgrade eras

    Search for supersymmetry in events with large missing transverse momentum, jets, and at least one tau lepton in 20 fb−1 of √s= 8 TeV proton-proton collision data with the ATLAS detector

    No full text
    © 2014, The Author(s). A search for supersymmetry (SUSY) in events with large missing transverse momentum, jets, at least one hadronically decaying tau lepton and zero or one additional light leptons (electron/muon), has been performed using 20.3fb−1of proton-proton collision data at √ s= 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed in the various signal regions and 95% confidence level upper limits on the visible cross section for new phenomena are set. The results of the analysis are interpreted in several SUSY scenarios, significantly extending previous limits obtained in the same final states. In the framework of minimal gauge-mediated SUSY breaking models, values of the SUSY breaking scale Λ below 63 TeV are excluded, independently of tan β. Exclusion limits are also derived for an mSUGRA/CMSSM model, in both the R-parity-conserving and R-parity-violating case. A further interpretation is presented in a framework of natural gauge mediation, in which the gluino is assumed to be the only light coloured sparticle and gluino masses below 1090 GeV are excluded
    corecore