422 research outputs found

    Larval Development in Tropical Gar (Atractosteus tropicus) Is Dependent on the Embryonic Thermal Regime: Ecological Implications under a Climate Change Context

    Get PDF
    In ectotherm species, environmental temperature plays a key role in development, growth, and survival. Thus, determining how temperature affects fish populations is of utmost importance to accurately predict the risk of climate change over fisheries and aquaculture, critical to warrant nutrition and food security in the coming years. Here, the potential effects of abnormal thermal regimes (24, 28 and 32 C; TR24, TR28, and TR32, respectively) exclusively applied during embryogenesis in tropical gar (Atractosteus tropicus) has been explored to decipher the potential consequences on hatching and growth from fertilization to 16 days post-fertilization (dpf), while effects on skeletal development and body morphology were explored at fertilization and 16 dpf. Egg incubation at higher temperatures induced an early hatching and mouth opening. A higher hatching rate was obtained in eggs incubated at 28 C when compared to those at 24 C. No differences were found in fish survival at 16 dpf, with values ranging from 84.89 to 88.86%, but increased wet body weight and standard length were found in larvae from TR24 and TR32 groups. Thermal regime during embryogenesis also altered the rate at which the skeletal development occurs. Larvae from the TR32 group showed an advanced skeletal development, with a higher development of cartilaginous structures at hatching but reduced at 16 dpf when compared with the TR24 and TR28 groups. Furthermore, this advanced skeletal development seemed to determine the fish body morphology. Based on biometric measures, a principal component analysis showed how along development, larvae from each thermal regime were clustered together, but with each population remaining clearly separated from each other. The current study shows how changes in temperature may induce craniofacial and morphological alterations in fish during early stages and contribute to understanding the possible effects of global warming in early development of fish and its ecological implications.Versión del edito

    Larval Development in Tropical Gar (Atractosteus tropicus) Is Dependent on the Embryonic Thermal Regime: Ecological Implications under a Climate Change Context

    Get PDF
    This article belongs to the Special Issue Current Advances and Challenges in Fisheries and Aquaculture Science: Feature Papers for the New Journey of Fishes[EN] In ectotherm species, environmental temperature plays a key role in development, growth, and survival. Thus, determining how temperature affects fish populations is of utmost importance to accurately predict the risk of climate change over fisheries and aquaculture, critical to warrant nutrition and food security in the coming years. Here, the potential effects of abnormal thermal regimes (24, 28 and 32 °C; TR24, TR28, and TR32, respectively) exclusively applied during embryogenesis in tropical gar (Atractosteus tropicus) has been explored to decipher the potential consequences on hatching and growth from fertilization to 16 days post-fertilization (dpf), while effects on skeletal development and body morphology were explored at fertilization and 16 dpf. Egg incubation at higher temperatures induced an early hatching and mouth opening. A higher hatching rate was obtained in eggs incubated at 28 °C when compared to those at 24 °C. No differences were found in fish survival at 16 dpf, with values ranging from 84.89 to 88.86%, but increased wet body weight and standard length were found in larvae from TR24 and TR32 groups. Thermal regime during embryogenesis also altered the rate at which the skeletal development occurs. Larvae from the TR32 group showed an advanced skeletal development, with a higher development of cartilaginous structures at hatching but reduced at 16 dpf when compared with the TR24 and TR28 groups. Furthermore, this advanced skeletal development seemed to determine the fish body morphology. Based on biometric measures, a principal component analysis showed how along development, larvae from each thermal regime were clustered together, but with each population remaining clearly separated from each other. The current study shows how changes in temperature may induce craniofacial and morphological alterations in fish during early stages and contribute to understanding the possible effects of global warming in early development of fish and its ecological implicationsSIThis work was partially funded by “Study of the digestive physiology in larvae and juveniles of tropical gar (Atractosteus tropicus) based on histological, biochemical and molecular techniques” project (Ref. CB-2016-01-282765) from the National Council for Science and Technology (CONACyT) of Mexico. I.F. acknowledges the funding from the MICIU and the European Social Fund, “The European Social Fund invests in your future” through the Ramón y Cajal (Ref. RYC2018-025337-I) contract from the Plan Estatal de Investigación Científica y Técnica e Innovación 2017–2020Authors also thanks the support from the RED LARVAplus “Estrategias de desarrollo y mejora de la producción de larvas de peces en Iberoamérica” (117RT0521) funded by the Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED

    Estimating the Prevalence of Cardiac Amyloidosis in Old Patients with Heart Failure—Barriers and Opportunities for Improvement: The PREVAMIC Study

    Full text link
    Background: Cardiac amyloidosis (CA) could be a common cause of heart failure (HF). The objective of the study was to estimate the prevalence of CA in patients with HF. Methods: Observational, prospective, and multicenter study involving 30 Spanish hospitals. A total of 453 patients >= 65 years with HF and an interventricular septum or posterior wall thickness > 12 mm were included. All patients underwent a Tc-99m-DPD/PYP/HMDP scintigraphy and monoclonal bands were studied, following the current criteria for non-invasive diagnosis. In inconclusive cases, biopsies were performed. Results: The vast majority of CA were diagnosed non-invasively. The prevalence was 20.1%. Most of the CA were transthyretin (ATTR-CM, 84.6%), with a minority of cardiac light-chain amyloidosis (AL-CM, 2.2%). The remaining (13.2%) was untyped. The prevalence was significantly higher in men (60.1% vs 39.9%, p = 0.019). Of the patients with CA, 26.5% had a left ventricular ejection fraction less than 50%. Conclusions: CA was the cause of HF in one out of five patients and should be screened in the elderly with HF and myocardial thickening, regardless of sex and LVEF. Few transthyretin-gene-sequencing studies were performed in older patients. In many patients, it was not possible to determine the amyloid subtype

    Clinical and Ecological Impact of an Educational Program to Optimize Antibiotic Treatments in Nursing Homes (PROA-SENIOR): A Cluster, Randomized, Controlled Trial and Interrupted Time-Series Analysis

    Get PDF
    [Background] Antimicrobial stewardship programs (ASPs) are recommended in nursing homes (NHs), although data are limited. We aimed to determine the clinical and ecological impact of an ASP for NHs.[Methods] We performed a cluster, randomized, controlled trial and a before–after study with interrupted time-series analyses in 14 NHs for 30 consecutive months from July 2018 to December 2020 in Andalusia, Spain. Seven facilities implemented an ASP with a bundle of 5 educational measures (general ASP) and 7 added 1-to-1 educational interviews (experimental ASP). The primary outcome was the overall use of antimicrobials, calculated monthly as defined daily doses (DDD) per 1000 resident days (DRD).[Results] The total mean antimicrobial consumption decreased by 31.2% (−16.72 DRD; P = .045) with respect to the preintervention period; the overall use of quinolones and amoxicillin–clavulanic acid dropped by 52.2% (P = .001) and 42.5% (P = .006), respectively; and the overall prevalence of multidrug-resistant organisms (MDROs) decreased from 24.7% to 17.4% (P = .012). During the intervention period, 12.5 educational interviews per doctor were performed in the experimental ASP group; no differences were found in the total mean antimicrobial use between groups (−14.62 DRD; P = .25). Two unexpected coronavirus disease 2019 waves affected the centers increasing the overall mean use of antimicrobials by 40% (51.56 DRD; P < .0001).[Conclusions] This study suggests that an ASP for NHs appears to be associated with a decrease in total consumption of antimicrobials and prevalence of MDROs. This trial did not find benefits associated with educational interviews, probably due to the coronavirus disease 2019 pandemic.[Clinical Trials Registration] NCT03543605.Peer reviewe

    Environmental-dependent proline accumulation in plants living on gypsum soils

    Full text link
    [EN] Biosynthesis of proline¿or other compatible solutes¿is a conserved response of all organisms to different abiotic stress conditions leading to cellular dehydration. However, the biological relevance of this reaction for plant stress tolerance mechanisms remains largely unknown, since there are very few available data on proline levels in stress-tolerant plants under natural conditions. The aim of this work was to establish the relationship between proline levels and different environmental stress factors in plants living on gypsum soils. During the 2-year study (2009¿2010), soil parameters and climatic data were monitored, and proline contents were determined, in six successive samplings, in ten taxa present in selected experimental plots, three in a gypsum area and one in a semiarid zone, both located in the province of Valencia, in south-east Spain. Mean proline values varied significantly between species; however, seasonal variations within species were in many cases even wider, with the most extreme differences registered in Helianthemum syriacum (almost 30 lmol g-1 of DW in summer 2009, as compared to ca. 0.5 in spring, in one of the plots of the gypsum zone). Higher proline contents in plants were generally observed under lower soil humidity conditions, especially in the 2009 summer sampling preceded by a severe drought period. Our results clearly show a positive correlation between the degree of environmental stress and the proline level in most of the taxa included in this study, supporting a functional role of proline in stress tolerance mechanisms of plants adapted to gypsum. However, the main trigger of proline biosynthesis in this type of habitat, as in arid or semiarid zones, is water deficit, while the component of ¿salt stress¿ due to the presence of gypsum in the soil only plays a secondary role.This work has been supported by the Spanish Ministry of Science and Innovation (Project CGL2008-00438/BOS), with contribution from the European Regional Development Fund.Boscaiu, M.; Bautista Carrascosa, I.; Lidón Cerezuela, AL.; Llinares Palacios, JV.; Lull, C.; Donat-Torres, M.; Mayoral García-Berlanga, O.... (2013). Environmental-dependent proline accumulation in plants living on gypsum soils. Acta Physiologiae Plantarum. 35:2193-2204. https://doi.org/10.1007/s11738-013-1256-3S2193220435Alvarado JJ, Ruiz JM, López-Cantarero I, Molero J, Romero L (2000) Nitrogen metabolism in five plant species characteristic of gypsiferous soils. J Plant Physiol 156:612–616Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207Briens M, Larher F (1982) Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant, Cell Environ 5:287–292Burriel F, Hernando V (1947) Nuevo método para determinar el fósforo asimilable en los suelos. Anales de Edafología y Fisiología Vegetal 9:611–622Caballero I, Olano JM, Loidi J, Escudero A (2003) Seed bank structure along a semi-arid gypsum gradient in Central Spain. J Arid Environ 55:287–299Escudero A, Carnes LF, Pérez García F (1997) Seed germination of gypsophytes and gypsovags in semi-arid central Spain. J Arid Environ 36:487–497Escudero A, Somolinos RC, Olano JM, Rubio A (1999) Factors controlling the establishment of Helianthemum squamatum, an endemic gypsophite of semi-arid Spain. J Ecol 87:290–302FAO (1990) Management of gypsiferous soils. FAO Soils Bull 62Ferriol M, Pérez I, Merle H, Boira H (2006) Ecological germination requirements of the aggregate species Teucrium pumilum (Labiatae) endemic to Spain. Plant Soil 284:205–216Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Ann Rev Plant Physiol 28:89–121Gil R, Lull C, Boscaiu M, Bautista I, Lidón A, Vicente O (2011) Soluble carbohydrates as osmolytes in several halophytes from a Mediterranean salt marsh. Not Bot Horti Agrobo 39(2):9–17Grigore MN, Boscaiu M, Vicente O (2011) Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. Eur J Plant Sci Biotech 5:12–19Hare PD, Cress WA, Van Standen J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553Keeney DR, Nelson DW (1982) Nitrogen inorganic forms. In: Page AL et al (eds) Methods of soil analysis, part 2: chemical and microbiological properties. Soil Science Society of America, Madison, pp 643–698Knudsen D, Peterson GA, Pratt PF (1982) Lithium, Sodium and Potassium. In: Page AL et al (eds) Methods of soil analysis, part 2: chemical and microbiological properties. Soil Science Society of America, Madison, pp 225–246Kuo S (1996) Phosphorus. In: Spark DL (ed) Methods of soil analysis: chemical methods, part 3. Soil Science Society of America, Madison, pp 869–919Martens H, Maes T (1989) Multivariate calibration. Wiley, New York, pp 97–108Martínez-Duro E, Ferrandis P, Escudero A, Luzuriaga AL, Herranz JM (2010) Secondary old-field succession in an ecosystem with restrictive soils: does time from abandonment matter? Appl Veg Sci 13:234–248Meyer SE (1986) The ecology of gypsophile endemism in the eastern Mojave desert. Ecology 67:1303–1313Meyer SE, García-Moya E (1989) Plant community patterns and soil moisture regime in gypsum grasslands of north central Mexico. J Arid Environ 16:147–155Meyer SE, García-Moya E, Lagunes-Espinoza LC (1992) Topographic and soil surface effects on gypsophile plant community patterns in central Mexico. J Veg Sci 3:429–438Moruno F, Soriano P, Vicente O, Boscaiu M, Estrelles E (2011) Opportunistic germination behaviour of Gypsophila (Caryophyllaceae) in two priority habitats from semi-arid Mediterranean steppes. Not Bot Horti Agrobo 39(1):18–23Mota JF, Sánchez Gómez P, Merlo Calvente ME, Catalán Rodríguez P, Laguna Lumbreras E, de la Cruz Rot M, Navarro Reyes FB, Marchal Gallardo F, Bartolomé Esteban C, Martínez Labarga JM, Sainz Ollero H, Valle Tendero F, Serra Laliga L, Martínez Hernández F, Garrido Becerra JA, Pérez García FJ (2009) Aproximación a la checklist de los gipsófitos ibéricos. Anales de Biología 31:71–80Murakeözy ÉP, Nagy Z, Duhazé C, Bouchereau A, Tuba Z (2003) Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J Plant Physiol 160:395–401Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL et al (eds) Methods of soil analysis, part 2: chemical and microbiological properties. Soil Science Society of America, Madison, pp 539–577Palacio S, Escudero A, Montserrat-Martí G, Maestro M, Milla R, Albert M (2007) Plants living on gypsum: beyond the specialist model. Ann Bot 99:333–343Parsons RF (1977) Gypsophily in plants—a review. Am Midl Nat 96:1–20Pueyo Y, Alados CL, Maestro M, Komac B (2007) Gypsophile vegetation patterns under a range of soil properties induced by topographical position. Plant Ecol 189:301–311Rivas-Martínez S, Rivas-Sáenz S (2009) Worldwide Bioclimatic Classification System. Phytosociological Research Center, Complutense University of Madrid, Spain. http://www.globalbioclimatics.org/ . Accessed 15 Nov 2012Romão RL, Escudero A (2005) Gypsum physical soil crusts and the existence of gypsophytes in semi-arid central Spain. Plant Ecol 181:127–137Rubio A, Escudero A (2000) Small-scale spatial soil-plant relationship in semi-arid gypsum environment. Plant Soil 220:139–150Ruíz JM, López-Cantarero I, Rivero RM, Romero L (2003) Sulphur phytoaccumulation in plant species characteristic of gypsiferous soils. Int J Phytorem 5:203–210Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97Szabados L, Kovács H, Zilberstein A, Bouchereau A (2011) Plants in extreme environments: importance of protective compounds in stress tolerance. Adv Bot Res 57:105–150Tecator Application Note (1984) AN 5226: Determination of ammonium in 2 M KCl soil extracts by FIAstar 5000. AN 5201: Determination of the sum of nitrate and nitrite in water by FIAstar 5000. (Adapted for 2 M KCl soil extracts)Tipirdamaz R, Gagneul D, Duhazé C, Aïnouche A, Monnier C, Özkum D, Larher F (2006) Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57:139–153Verheye WH, Boyadgiev TG (1997) Evaluating the land use potential of gypsiferous soils from field pedogenic characteristics. Soil Use Manage 13:97–103Vicente O, Boscaiu M, Naranjo MA, Estrelles E, Bellés JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58:463–481Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–283

    Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species

    Get PDF
    Artículo 473Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in La Albufera Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves where they are presumably compartmentalized in vacuoles and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na+ and Cl- contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K+ transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level estimated from malondialdehyde accumulation was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results, we concluded that although D. viscosa cannot directly compete with true halophytes in highly saline environments, it is nevertheless quite stress tolerant and therefore represents a threat for the vegetation located on the salt marshes borders, where several endemic and threatened species are found in the area of studyWork in the UPV laboratories was partly funded by a grant to OV from the Spanish Ministry of Science and Innovation (Project CGL2008-00438/BOS), with contribution from the European Regional Development Fund.Al Hassan, M.; Juliana Chaura; López Gresa, MP.; Orsolya Borsai; Daniso, E.; Donat-Torres, MP.; Mayoral García-Berlanga, O.... (2016). Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species. Frontiers in Plant Science. 7:1-21. https://doi.org/10.3389/fpls.2016.00473S121
    corecore