36 research outputs found

    Lack of maintenance of motorway fences works against their intended purpose with potential negative impacts on protected species

    Get PDF
    Linear infrastructure intrusions into natural ecosystems, such as motorways and high-speed railways, causes direct loss of habitat but also impacts fauna through collisions. Wildlife road mortality is well documented and extensive conservation legislation exists in many countries to minimise the negative impact of these infrastructures. However, although these measures are implemented because of legislation, these structures are often not adequately maintained. Here we present data on the functionality of perimeter fences along two motorways in Malaga province (southern Spain) erected to prevent collisions with the common chameleon (Chamaeleo chamaeleon). We sampled the fences along the 14 km of the two motorways included in the 17 1 × 1 km squares of the study area. Our results show that the reptile fence is permeable throughout at those points where the metal sheeting was absent and where the vegetation had overgrown around the fence, hence allowing chameleons to cross. Given our results, we conclude that this situation is likely to be similar in other regions of Spain and in other countries. This is because construction/concessionary companies do not consider the environmental impact of construction projects in the medium and long term, and environmental authorities do not ensure that companies comply with the legislation

    Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics

    Get PDF
    Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0 7 1017 eV -2.5 7 1019 eV is E2 dN\u3bd/dE\u3bd < 4.4 7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays

    Machine learning using the extreme gradient boosting (XGBoost) algorithm predicts 5-day delta of SOFA score at ICU admission in COVID-19 patients

    Get PDF
    Background: Accurate risk stratification of critically ill patients with coronavirus disease 2019 (COVID-19) is essential for optimizing resource allocation, delivering targeted interventions, and maximizing patient survival probability. Machine learning (ML) techniques are attracting increased interest for the development of prediction models as they excel in the analysis of complex signals in data-rich environments such as critical care. Methods: We retrieved data on patients with COVID-19 admitted to an intensive care unit (ICU) between March and October 2020 from the RIsk Stratification in COVID-19 patients in the Intensive Care Unit (RISC-19-ICU) registry. We applied the Extreme Gradient Boosting (XGBoost) algorithm to the data to predict as a binary out- come the increase or decrease in patients’ Sequential Organ Failure Assessment (SOFA) score on day 5 after ICU admission. The model was iteratively cross-validated in different subsets of the study cohort. Results: The final study population consisted of 675 patients. The XGBoost model correctly predicted a decrease in SOFA score in 320/385 (83%) critically ill COVID-19 patients, and an increase in the score in 210/290 (72%) patients. The area under the mean receiver operating characteristic curve for XGBoost was significantly higher than that for the logistic regression model (0.86 vs . 0.69, P < 0.01 [paired t -test with 95% confidence interval]). Conclusions: The XGBoost model predicted the change in SOFA score in critically ill COVID-19 patients admitted to the ICU and can guide clinical decision support systems (CDSSs) aimed at optimizing available resources

    Measurement of the Fluctuations in the Number of Muons in Extensive Air Showers with the Pierre Auger Observatory

    Get PDF
    The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Argentina-Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas; in gratitude for their continuing cooperation over land access; Australia-the Australian Research Council; BrazilConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants No. 2019/10151-2, No. 2010/07359-6, and No. 1999/05404-3, Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes (MCTIC); Ministry of Education, Youth and Sports of the Czech RepublicGrants No. MSMT CR LTT18004, No. LM2015038, No. LM2018102, No. CZ.02.1.01/0.0/0.0/16_013/0001402, No. CZ.02.1.01/0.0/0.0/18_046/0016010, and No. CZ.02.1.01/0.0/0.0/17_049/0008422; France-Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucl ' eaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63 within the Investissements d'Avenir Programme Grant No. ANR11-IDEX-0004-02; Germany-Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz Alliance for Astroparticle Physics (HAP), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst des Landes Baden-Wurttemberg; Italy-Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica (INAF), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), CETEMPS Center of Excellence, Ministero degli Affari Esteri (MAE); Mexico-Consejo Nacional de Ciencia y Tecnologia (CONACYT) Grant No. 167733, Universidad Nacional Autonoma de Mexico (UNAM), PAPIIT DGAPA-UNAM; The Netherlands-Ministry of Education, Culture and Science, Netherlands Organisation for Scientific Research (NWO), Dutch national e-infrastructure with the support of SURF Cooperative; Poland-Ministry of Science and Higher Education, Grant No. DIR/WK/2018/11, National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2016/23/B/ST9/01635, and No. HARMONIA 5-2013/10/M/ST9/00062, UMO-2016/22/M/ST9/00198; Portugal -Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE); Romania-Romanian Ministry of Education and Research, the Program Nucleu within MCI (PN19150201/16N/2019 and PN19060102), and project PN-III-P1-1.2-PCCDI-2017-0839/19PCCDI/2018 within PNCDI III; Slovenia-Slovenian Research Agency, Grants No. P1-0031, No. P1-0385, No. I00033, No. N1-0111; Spain-Ministerio de Economia, Industria y Competitividad (FPA2017-85114-P and FPA2017-85197-P), Xunta de Galicia (ED431C 2017/07), Junta de Andalucia (SOMM17/6104/UGR), Feder Funds, RENATA Red Nacional Tematica de Astroparticulas (FPA2015-68783-REDT), and Maria de Maeztu Unit of Excellence (MDM-2016-0692); U.S.Department of Energy, Awards No. DE-AC0207CH11359, No. DE-FR02-04ER41300, No. DE-FG0299ER41107, and No. DE-SC0011689, National Science Foundation, Grant No. 0450696, The Grainger Foundation, Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, and UNESCO.We present the first measurement of the fluctuations in the number of muons in extensive air showers produced by ultrahigh energy cosmic rays. We find that the measured fluctuations are in good agreement with predictions from air shower simulations. This observation provides new insights into the origin of the previously reported deficit of muons in air shower simulations and constrains models of hadronic interactions at ultrahigh energies. Our measurement is compatible with the muon deficit originating from small deviations in the predictions from hadronic interaction models of particle production that accumulate as the showers develop.Argentina-Comision Nacional de Energia AtomicaANPCyTConsejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET)Gobierno de la Provincia de MendozaMunicipalidad de MalargueNDM HoldingsValle Las LenasAustralian Research CouncilConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ)Fundacao de Apoio a Pesquisa do Distrito Federal (FAPDF)Financiadora de Inovacao e Pesquisa (Finep)Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio De Janeiro (FAPERJ)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) 2019/10151-2 2010/07359-6 1999/05404-3Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes (MCTIC)Ministry of Education, Youth & Sports - Czech Republic MSMT CR LTT18004 LM2015038 LM2018102 CZ.02.1.01/0.0/0.0/16_013/0001402 CZ.02.1.01/0.0/0.0/18_046/0016010 CZ.02.1.01/0.0/0.0/17_049/0008422France-Centre de Calcul IN2P3/CNRSCentre National de la Recherche Scientifique (CNRS)Region Ile-de-FranceCentre National de la Recherche Scientifique (CNRS)Departement Sciences de l'Univers (SDU-INSU/CNRS)French National Research Agency (ANR) LABEX ANR-10-LABX-63 ANR11-IDEX-0004-02Federal Ministry of Education & Research (BMBF)German Research Foundation (DFG)Finanzministerium Baden-WurttembergHelmholtz Alliance for Astroparticle Physics (HAP)Helmholtz AssociationMinisterium fur Innovation, Wissenschaft und Forschung des Landes Nordrhein-WestfalenMinisterium fur Wissenschaft, Forschung und Kunst des Landes Baden-WurttembergItaly-Istituto Nazionale di Fisica Nucleare (INFN)Istituto Nazionale Astrofisica (INAF)Ministry of Education, Universities and Research (MIUR)CETEMPS Center of ExcellenceMinistry of Foreign Affairs and International Cooperation (Italy)Consejo Nacional de Ciencia y Tecnologia (CONACyT) 167733Universidad Nacional Autonoma de Mexico (UNAM), PAPIIT DGAPA-UNAMNetherlands-Ministry of Education, Culture and ScienceNetherlands Organization for Scientific Research (NWO)Dutch national e-infrastructureSURF CooperativePoland-Ministry of Science and Higher Education DIR/WK/2018/11National Science Centre, Poland 2013/08/M/ST9/00322 2016/23/B/ST9/01635 HARMONIA 5-2013/10/M/ST9/00062 UMO-2016/22/M/ST9/00198Portugal -Portuguese national fundsFEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE)Romania-Romanian Ministry of Education and Research, the Program Nucleu within MCI PN19150201/16N/2019 PN19060102Romania-Romanian Ministry of Educatio n and Research, the Program Nucleu within PNCDI III PN-III-P1-1.2-PCCDI-2017-0839/19PCCDI/2018Slovenian Research Agency - Slovenia P1-0031 P1-0385 I00033 N1-0111Spain-Ministerio de Economia, Industria y Competitividad FPA2017-85114-P FPA2017-85197-PXunta de Galicia European Commission ED431C 2017/07Junta de Andalucia SOMM17/6104/UGREuropean CommissionRENATA Red Nacional Tematica de Astroparticulas FPA2015-68783-REDTMaria de Maeztu Unit of Excellence MDM-2016-0692United States Department of Energy (DOE) DE-AC0207CH11359 DE-FR02-04ER41300 DE-FG0299ER41107 DE-SC0011689National Science Foundation (NSF) 0450696Grainger FoundationMarie Curie-IRSES/EPLANETEuropean Particle Physics Latin American NetworkUNESC

    Implications of early respiratory support strategies on disease progression in critical COVID-19: a matched subanalysis of the prospective RISC-19-ICU cohort

    No full text
    Background: Uncertainty about the optimal respiratory support strategies in critically ill COVID-19 patients is wide‑ spread. While the risks and benefts of noninvasive techniques versus early invasive mechanical ventilation (IMV) are intensely debated, actual evidence is lacking. We sought to assess the risks and benefts of diferent respiratory sup‑ port strategies, employed in intensive care units during the frst months of the COVID-19 pandemic on intubation and intensive care unit (ICU) mortality rates. Methods: Subanalysis of a prospective, multinational registry of critically ill COVID-19 patients. Patients were subclas‑ sifed into standard oxygen therapy ≥10 L/min (SOT), high-fow oxygen therapy (HFNC), noninvasive positive-pressureBackground: Uncertainty about the optimal respiratory support strategies in critically ill COVID-19 patients is widespread. While the risks and benefits of noninvasive techniques versus early invasive mechanical ventilation (IMV) are intensely debated, actual evidence is lacking. We sought to assess the risks and benefits of different respiratory support strategies, employed in intensive care units during the first months of the COVID-19 pandemic on intubation and intensive care unit (ICU) mortality rates. Methods: Subanalysis of a prospective, multinational registry of critically ill COVID-19 patients. Patients were subclassified into standard oxygen therapy ≥10 L/min (SOT), high-flow oxygen therapy (HFNC), noninvasive positive-pressure ventilation (NIV), and early IMV, according to the respiratory support strategy employed at the day of admission to ICU. Propensity score matching was performed to ensure comparability between groups. Results: Initially, 1421 patients were assessed for possible study inclusion. Of these, 351 patients (85 SOT, 87 HFNC, 87 NIV, and 92 IMV) remained eligible for full analysis after propensity score matching. 55% of patients initially receiving noninvasive respiratory support required IMV. The intubation rate was lower in patients initially ventilated with HFNC and NIV compared to those who received SOT (SOT: 64%, HFNC: 52%, NIV: 49%, p = 0.025). Compared to the other respiratory support strategies, NIV was associated with a higher overall ICU mortality (SOT: 18%, HFNC: 20%, NIV: 37%, IMV: 25%, p = 0.016). Conclusion: In this cohort of critically ill patients with COVID-19, a trial of HFNC appeared to be the most balanced initial respiratory support strategy, given the reduced intubation rate and comparable ICU mortality rate. Nonetheless, considering the uncertainty and stress associated with the COVID-19 pandemic, SOT and early IMV represented safe initial respiratory support strategies. The presented findings, in agreement with classic ARDS literature, suggest that NIV should be avoided whenever possible due to the elevated ICU mortality risk

    A Search for Ultra-high-energy Neutrinos from TXS 0506+056 Using the Pierre Auger Observatory

    No full text

    A Search for Ultra-high-energy Neutrinos from TXS 0506+056 Using the Pierre Auger Observatory

    Get PDF
    International audienceResults of a search for ultra-high-energy neutrinos with the Pierre Auger Observatory from the direction of the blazar TXS 0506+056 are presented. They were obtained as part of the follow-up that stemmed from the detection of high-energy neutrinos and gamma rays with IceCube, Fermi-LAT, MAGIC, and other detectors of electromagnetic radiation in several bands. The Pierre Auger Observatory is sensitive to neutrinos in the energy range from 100 PeV to 100 EeV and in the zenith-angle range from θ = 60° to θ = 95°, where the zenith angle is measured from the vertical direction. No neutrinos from the direction of TXS 0506+056 have been found. The results were analyzed in three periods: one of 6 months around the detection of IceCube-170922 A, coinciding with a flare period of TXS 0506+056, a second one of 110 days during which the IceCube collaboration found an excess of 13 neutrinos from a direction compatible with TXS 0506+056, and a third one from 2004 January 1 up to 2018 August 31, over which the Pierre Auger Observatory has been taking data. The sensitivity of the Observatory is addressed for different spectral indices by considering the fluxes that would induce a single expected event during the observation period. For indices compatible with those measured by the IceCube collaboration the expected number of neutrinos at the Observatory is well below one. Spectral indices as hard as 1.5 would have to apply in this energy range to expect a single event to have been detected

    Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory

    No full text
    International audienceAMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to complement the study of ultra-high-energy cosmic rays (UHECR) by measuring the muon content of extensive air showers (EAS). It consists of an array of 61 water Cherenkov detectors on a denser spacing in combination with underground scintillation detectors used for muon density measurement. Each detector is composed of three scintillation modules, with 10 m2 detection area per module, buried at 2.3 m depth, resulting in a total detection area of 30 m2. Silicon photomultiplier sensors (SiPM) measure the amount of scintillation light generated by charged particles traversing the modules. In this paper, the design of the front-end electronics to process the signals of those SiPMs and test results from the laboratory and from the Pierre Auger Observatory are described. Compared to our previous prototype, the new electronics shows a higher performance, higher efficiency and lower power consumption, and it has a new acquisition system with increased dynamic range that allows measurements closer to the shower core. The new acquisition system is based on the measurement of the total charge signal that the muonic component of the cosmic ray shower generates in the detector

    The Pierre Auger Observatory: Contributions to the 35th International Cosmic Ray Conference (ICRC 2017)

    No full text

    Measurement of the cosmic-ray energy spectrum above 2.5×10182.5{\times} 10^{18} eV using the Pierre Auger Observatory

    No full text
    corecore