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Abstract 

Background: Accurate risk stratification of critically ill patients with coronavirus disease 

2019 (COVID-19) is essential for optimizing resource allocation, delivering targeted 

interventions, and maximizing patient survival probability. Machine learning (ML) 

techniques are attracting increased interest for the development of prediction models as they 

excel in the analysis of complex signals in data-rich environments such as critical care. 

Methods: We retrieved data on patients with COVID-19 admitted to an intensive care unit 

(ICU) between March and October 2020 from the RIsk Stratification in COVID-19 patients 

in the Intensive Care Unit (RISC-19-ICU) registry. We applied the Extreme Gradient 

Boosting (XGBoost) algorithm to the data to predict as a binary outcome the increase or 

decrease in patients’ Sequential Organ Failure Assessment (SOFA) score on day 5 after ICU 

admission. The model was iteratively cross-validated in different subsets of the study cohort. 

Results: The final study population consisted of 675 patients. The XGBoost model correctly 

predicted a decrease in SOFA score in 320/385 (83%) critically ill COVID-19 patients, and 

an increase in the score in 210/290 (72%) patients. The area under the mean receiver 

operating characteristic curve for XGBoost was significantly higher than that for the logistic 

regression model {0.86 vs. 0.69, P < 0.01 (paired t-test with 95% confidence interval [CI])}. 

                  



Conclusions: The XGBoost model predicted the change in SOFA score in critically ill 

COVID-19 patients admitted to the ICU and can guide clinical decision support systems 

(CDSSs) aimed at optimizing available resources. 
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Introduction 

The coronavirus disease 2019 (COVID-19) outbreak represents one of the most critical global 

health emergencies in modern times, with >4.7 million deaths reported worldwide as of the 

end of September 2021.[1] The COVID-19 pandemic has posed an unprecedented healthcare 

challenge, with intensive care unit (ICU) capacity rapidly exceeded around the world in the 

first weeks of the outbreak and subsequent resurgences.[2] The ability to predict patient 

outcomes by analyzing ICU medical records is hampered by numerous challenges such as a 

lack of structured clinical data, missing values, and datasets with a limited number of 

patients. Under these conditions, predicting the probability that a patient will either develop 

complications associated with COVID-19 or improve is important as it may help to define a 

personalized risk profile that will optimize clinical management.[3] The analytical capability 

of machine learning (ML) methods has proven extremely accurate and in some cases, 

superior to classical statistical approaches.[4] This was confirmed by our recent work in this 

area in which we proposed ML-based methodologies for predicting the risk of certain 

conditions and complications related to chronic diseases.[5–7] The use of ML to design a 

                  



Clinical Decision Support System (CDSS) also has practical value beyond clinical diagnosis 

and disease modeling.[8] 

Real-world datasets from the ICU usually consist of data with high dimensionality in 

terms of both an absolute number of monitored parameters and sampling frequency. On the 

other hand, the collected features are usually characterized by noise and/or redundancy. 

While managing and modeling this amount of data, there are several challenges such as 

overfitting, low interpretability, data heterogeneity, and missing values. 

Data-driven techniques may be useful for analyzing stored multifactorial temporal ICU 

data to construct advanced ML models that can predict clinical outcomes and reveal complex 

patterns that may not be obvious to physicians.[9] Predictive ML models can also aid 

physicians in predicting early-stage disease by identifying the most relevant clinical factors in 

the risk profile of a given condition. Among existing ML algorithms, the Extreme Gradient 

Boosting (XGBoost) model has gained popularity for its generalizability, low risk of 

overfitting, and high interpretability; it outperforms other data mining methods for predictive 

medicine tasks based on tabular (e.g., electronic health record [EHR]) data[10] and has been 

applied to critical care situations such as cardiovascular compromise with volume 

resuscitation[9, 10] and other conditions.[11–13] 

We speculated that the XGBoost model can be used as a platform to predict disease 

course in COVID-19 patients. To test this hypothesis, in the present study, we applied the 

model to predict changes in the Sequential Organ Failure Assessment (SOFA) score in 

COVID-19 patients within the first 5 days of admission to the ICU. We also compared the 

performance of the XGBoost model with that of a standard regression method. 

Methods 

Setting and descriptive statistics 

                  



The study population was retrieved from the RIsk Stratification in COVID-19 patients in the 

Intensive Care Unit (RISC-19-ICU) registry, which includes patients diagnosed with 

COVID-19 and admitted to the ICU or semi-ICU. The registry was launched on March 17, 

2020, and was created for near real-time tracking of patients at up to 96 centers in 15 

different countries who developed a critical illness due to COVID-19.[14, 15] The number of 

critically ill COVID-19 patients has been increasing steadily, with 1613 individual 

admissions at the end of October 2020. Patient characteristics at ICU admission are reported 

as counts, percentages (%), means, standard deviations, or medians and interquartile ranges 

(IQRs) as appropriate. These were compared between patients with an increase vs. a decrease 

in SOFA score of ≥2 points within the first 5 days of ICU admission using the independent 

samples t-test or Wilcoxon rank-sum test for continuous variables and the chi-squared test for 

categorical variables. Statistical analysis was performed with a fully scripted data 

management pathway using R v3.6.3 (cran.r-project.org). A two-sided P-value <0.05 was 

considered statistically significant. 

Prediction model 

Study variables 

The SOFA score assesses the acute morbidity of critically ill patients and has been validated 

in different settings.[16] Patient characteristics and laboratory and physiologic parameters at 

the time of ICU admission or within the first 24 h were used as predictors [Figure 1 and 

Supplementary Table S1]. Features with >70% missing values were excluded from the 

model. 

Predicted outcome 

Predicting the probability of organ failure can help physicians in deciding whether to 

intensify or de-escalate monitoring and treatment. We used the XGBoost model to predict the 

change in SOFA score of patients on day 5 after ICU admission (pattern discrimination). An 

                  



increase in SOFA score ≥2 points or a decrease of ≤2 points according to the Sepsis-3 

definition[17] was defined as worsening or improvement, respectively, of the patient’s clinical 

status. 

Model development 

The process used to construct the XGBoost model to predict the increase or decrease in 

SOFA score is shown in Figure 2. The gradient tree boosting algorithm extends the concept 

of adaptive boosting by sequentially adding predictors and correcting previous models using 

the gradient descent algorithm[18]; the learning process involves iteratively refitting a weak 

classifier to errors in previous models. Each successive classifier focuses on patients 

misclassified in the previous round of fitting to minimize the generalization error. A 

classification tree was used as the weak learner, and the learning objective function was 

binary logistic. 

Once the worsening or improvement of critically ill COVID-19 patients was detected in 

the features, we analyzed where this information was encoded (feature importance). The 

model was constructed using the entire RISC-19-ICU dataset after excluding patients with a 

change in SOFA score ≤1 and those with a missing SOFA score at admission or on day 5 

after admission. The model was tested using a 10-fold cross-validation (CV-10) procedure 

that divided the entire study cohort into 10 non-overlapping folds for each cross-validation 

cycle by selecting 9 folds for training and 1 for testing. To improve generalizability, ML 

model complexity was modulated by optimizing the parameters controlling the training 

process (i.e., hyperparameters) using nested cross-validation within the training set. XGBoost 

hyperparameters included the number of iterations of the boosting procedure, learning rate, 

maximum depth of a tree, and subsample ratio of the training features. The optimal 

hyperparameters were determined by implementing a grid search and optimizing the macro-

recall in a nested 5-fold CV. Hence, each split of the outer loop was trained with the optimal 

                  



hyperparameters tuned in the inner loop. Although this procedure is computationally costly, it 

allows an unbiased and robust performance evaluation.[19] We compared the predictive 

performance of the XGBoost model to that of a standard logistic regression-based prediction 

model based on a confusion matrix and area under the receiving operating characteristic 

(ROC) curve with a 95% confidence interval (CI). All experiments were reproducible and 

were performed using Python 3.7 with a 2.3 GHz Intel Core i7 quad-core processor and 16 

GB RAM. 

Results 

Of the 1613 patients included in the RISC-19-ICU registry as of October 2020, 1030 had 

stayed in the ICU for ≥5 days and had valid SOFA scores both at ICU admission and on day 

5 after admission. The model was applied to the entire RISC-19-ICU cohort comprising 675 

patients with an absolute change in SOFA score of ≥2 points between the two time points. 

The median age of patients was 64 years (interquartile range [IQR]: 56–63 years) and 74% 

were males. At ICU admission, the median SOFA score was 11 (IQR: 6–14), the median time 

from symptom onset was 8 days (IQR: 6–11 days), median arterial oxygen partial pressure to 

fractional inspired oxygen ratio (pO2/FiO2) was 122 (IQR: 81–171), and 86% of patients were 

mechanically ventilated [Table 1]. 

The model correctly predicted SOFA worsening in 320/385 patients (83%) with 

increased SOFA score and improvement in 210/290 patients (72%) with a decreased score, 

with an area under the mean ROC curve of 0.86 (95% CI: 0.85–0.90; Figure 3A). As 

expected, the features most relevant to changes in the SOFA score were its components 

including Glasgow coma scale score, state of shock, use of vasopressors, and bilirubin 

concentration [Figure 3B]. However, other features are known to be related to patient 

outcomes such as type of respiratory support, Acute Physiology and Chronic Health disease 

Classification System (APACHE) II score, and Simplified Acute Physiologic Score (SAPS) 

                  



II score also contributed to the correct prediction. Notably, while the prevalence of diabetes 

was similar between patients with improved vs. worsened SOFA scores, the presence/absence 

of diabetes mellitus was among the most relevant conditions for predicting the change in 

SOFA score on day 5 after ICU admission. 

Because of differences in the management of missing data, the predictive model 

developed by standard logistic regression included 669 patients. SOFA worsening was 

correctly predicted in 263/380 patients (69%) presenting an increased SOFA score while 

SOFA improvement was correctly predicted in 210/287 (72%) patients with a decreased 

SOFA score, corresponding to an area under the mean ROC curve of 0.69 (95% CI: 0.66–

0.72; Supplementary Figure S1a). The XGBoost model performed significantly better than 

the logistic regression model in predicting an increase or decrease in SOFA score on day 5 

(P < 0.01; paired t-test). Interestingly, the most important features with the logistic regression 

model differed from those identified by the XGBoost model, with SAPS II score, bilirubin 

concentration, and use of norepinephrine at ICU admission being the only three features 

common to both models [Supplementary Figure S1b]. 

Discussion 

The results of the present study showed that the XGBoost model based on an ML algorithm 

was more effective than the classical method of logistic regression in identifying critically ill 

COVID-19 patients admitted to the ICU whose clinical condition was likely to worsen or 

improve. After mortality, disease severity was found to be the most important determinant of 

resource use in the management of critically ill patients, which is especially important during 

the current COVID-19 pandemic.[14] 

Health informatics technology is highly valuable for predictive medicine as it provides 

clinicians with tools for obtaining information regarding individuals at risk, disease onset, 

and potential interventions. However, EHRs have been unable to reduce the clerical burden 

                  



or improve clinical care by supporting physicians in clinical decision-making.[20] EHRs 

should provide reliable and clinically significant information, facilitate the early detection of 

treatable conditions, and produce a measurable improvement in clinical practices. Driven by 

increases in computational power, storage, and memory and the generation of staggering 

volumes of data, ML methodologies can facilitate the accurate analysis and optimal use of 

EHR data. 

From a pathophysiologic standpoint, the deterioration of organ function as represented 

by an increasing SOFA score is particularly important for critically ill patients diagnosed 

with COVID-19. A recent study demonstrated a relationship between SOFA score and 

changes in microcirculation in COVID-19 patients[21]: only patients with a score <10 could 

enhance their oxygen extraction capacity by increasing capillary density and capillary 

hematocrit, while those with a score ≥10 lacked this capacity and had higher levels of 

microcirculatory leukocytes and microaggregates. Interestingly, microvascular dysfunction 

was recently shown to contribute to the association between COVID-19 outcome and 

diabetes.[22] This was supported by a study conducted in France that reported an adjusted 2-

fold increased risk of mortality within 7 days of hospital admission in diabetes patients with 

COVID-19 and microvascular complications compared with patients without such 

complications.[23] Thus, systemic impairment of the microcirculation may lead to worse 

outcomes in COVID-19 patients. 

A recent report exploring host-specific genetic factors associated with COVID-19 

severity found a genetic correlation between type II diabetes and COVID-19 outcome, 

although there was no evidence of a causal association in the Mendelian regression analysis; 

the observed correlation may have been attributable to pleiotropic effects between type II 

diabetes and body mass index, which were shown to be causally linked to COVID-19 

severity.[24] In the present study, we found that while diabetes was among the most important 

                  



features for the prediction of changes in SOFA score, there was no difference in the 

prevalence of diabetes between patients with improved vs. worsened SOFA scores. Thus, a 

prediction model that can accurately estimate changes in SOFA score may aid in the early 

identification of patients with impaired physiologic adaptation and yield insight into the 

pathophysiologic mechanisms underlying the development of severe COVID-19. Based on 

this rationale, ML algorithms provide a means of developing a CDSS that can predict the risk 

of short-term complications in ICU patients. 

We demonstrated the superiority of the XGBoost model over a logistic regression 

model for predicting changes in SOFA score in critically ill COVID-19 patients. Compared 

with traditional methods that use univariate and multivariate statistics for pattern 

discrimination, an ML approach based on the XGBoost algorithm has superior detection 

sensitivity and generalizability because it combines multiple types of information across 

several variables (i.e., a high-dimensional problem) based on a relatively small dataset. 

XGBoost also has advantages over other ML methods: it makes no assumptions regarding 

data distribution and uses individual decision trees, and may thus be unaffected by 

multicollinearity. Another benefit of ensemble methods such as XGBoost is that they 

automatically estimate feature importance from a trained predictive model, yielding a score 

for the utility or value of each feature in the construction of boosted decision trees within the 

model. The more an attribute is used to make key decisions in decision trees, the higher its 

relative importance. Consequently, the most important features identified by the model are 

potential targets for therapeutics aimed at preventing deterioration of the patient’s condition. 

In our study, the most important features contributing to changes in SOFA score identified by 

the XGBoost model differed from those identified by standard logistic regression; the 

increased/decreased risk of organ failure in COVID-19 patients likely resulted from 

interaction among several processes, and may therefore be difficult to detect with 

                  



conventional approaches. Thus, the application of the XGBoost model to critically ill 

COVID-19 patients provided clinically useful prognostic information that may help to 

optimize resource allocation and aid physicians in making personalized treatment decisions. 

This study had some limitations that must be addressed to establish accurate and 

validated models for the creation of a CDSS that has clinical utility. First, although the 

XGBoost algorithm has a low risk of overfitting, the lack of an external validation cohort of 

ICU patients undermines the generalizability of our predictive model. Additionally, while 

XGBoost identified important global features contributing to changes in SOFA score, our 

model was not fully tailored to support clinical decisions. Further investigation using 

XGBoost and post hoc interpretability methods is needed to evaluate local feature importance 

and relationships. 

To conclude, we developed a prediction model using ML methodology for evaluating 

the risk of organ failure in COVID-19 patients in the ICU. The predictive performance of our 

model was superior to that of a standard regression approach, and we anticipate that it will be 

further developed and adapted to the changing needs of a rapidly growing prospective RISC-

19-ICU cohort and will provide clinically relevant information regarding outcomes such as 

the need for endotracheal intubation and renal replacement therapy as well as mortality. 

Moreover, our model has high interpretability as it identifies features that are directly related 

to the development of complications associated with COVID-19; and extending the model to 

non-ICU departments can help to identify patients with a high probability of noninvasive 

ventilation failure and ICU admission for non-respiratory complications. Finally, the 

integration of the model into the RISC-19-ICU registry can enable profiling of morbidity risk 

and resource consumption by patients according to their clinical features. This can ensure the 

appropriate allocation of resources to patients who need them the most through the delivery 

of appropriate care and personalized interventions. 
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Figure 1: The timeline used to collect features to include in the model and the predicted 

outcomes. ICU: Intensive care unit; SOFA: Sequential organ failure assessment. 

 

 

 

 

 

Figure 2: Description of the steps applied to build and test the prediction model. ICU: 

Intensive care unit; ML: Machine learning; RISC-19-ICU: RIsk Stratification in COVID-19 

patients in the Intensive Care Unit; XGBoost: Extreme gradient boosting. 

 

                  



Figure 3: The description of the model performance (A) and the most important features 

identified by the model (B). APACHE: Acute Physiology and Chronic Health disease 

Classification System; COVID-19: Coronavirus disease 2019; ICU: Intensive Care Unit; ML: 

Machine Learning; RISC-19-ICU: RIsk Stratification in COVID-19 patients in the Intensive 

Care Unit; ROC: Receiving Operating Characteristics; SAPS: Simplified Acute Physiologic 

Score; SOFA: Sequential Organ Failure Assessment.  

 

                  



Table 1: Characteristics at ICU admission of critically ill COVID-19 patients that have 

experienced a change in SOFA score of at least two points between ICU admission and day 5, 

stratified by an increase or decrease in SOFA score during the first 5 days of ICU treatment. 

Variables 

Decreased SOFA score at 

day 5 in the ICU 

Increased SOFA at day 5 

in the ICU 

P-

value 

Patients (n) 293 383  

Characteristics    

Age (years) 61.4 (12.7) 63.9 (11.7) 0.010 

Male sex (%) 80 (4) 70 (5) <0.010 

Body mass index (kg/m2) 29.4 (5.3) 28.8 (5.6) 0.170 

Time from symptom onset to 

hospitalization (days) 7.6 (5.6) 7.4 (5.3) 0.710 

Time from hospitalization to 

ICU admission (days) 2.9 (6.3) 2.8 (4.9) 0.960 

Preexisting conditions    

Number of preexisting 

conditions 0.7 (1.0) 0.7 (1.1) 0.930 

Ischemic heart disease 147 (50.2)  182 (47.5)  0.540 

Chronic heart failure 33 (11.3)  42 (11.0)  1.000 

Atherosclerotic arteriopathy 23 (7.8)  43 (11.2)  0.180 

Arterial hypertension 73 (24.9)  104 (27.2)  0.570 

Diabetes mellitus 36 (12.3)  39 (10.2)  0.460 

Insulin-dependent diabetes 

mellitus 37 (12.6)  53 (13.8)  0.730 

                  



Physiologic status at ICU 

admission    

APACHE II score 16.8 (6.6) 16.5 (7.4) 0.530 

SAPS II score 55.8 (17.0) 53.9 (17.9) 0.150 

SOFA score 13.8 (3.9) 11.7 (4.0) <0.010 

-Respiratory system sub-

score 3.0 (0.9) 2.8 (0.9) <0.010 

-Coagulation system sub-

score 0.2 (0.5) 0.3 (0.6) 0.660 

-Liver sub-score 2.4 (1.6) 1.7 (1.7) <0.010 

-Cardiovascular system sub-

score 2.2 (1.6) 1.7 (1.7) <0.010 

-Central nervous system sub-

score 2.6 (1.9) 2.2 (1.9) 0.010 

-Renal sub-score 3.8 (0.7) 3.7 (1.0) 0.020 

Mean arterial pressure 

(mmHg) 80.0 (15.1) 84.3 (15.6) <0.010 

Norepinephrine dose (µg/kg) 7.3 (9.7) 4.4 (14.2) 0.020 

PaO2/FiO2 ratio (mmHg) 151.4 (149.5) 162.0 (194.0) 0.470 

Ventilatory ratio 2.0 (1.0) 2.1 (1.5) 0.510 

Laboratory measurements at 

ICU admission    

White blood cell count (g/L) 10.1 (7.1) 9.4 (5.2) 0.180 

Neutrophil granulocyte count 8.3 (6.6) 7.8 (3.9) 0.300 

                  



(g/L) 

Lymphocyte count (g/L) 1.3 (2.1) 1.7 (2.2) 0.060 

IL-6 (ng/L) 125.0 (75.9, 289.0) 129.7 (66.5, 253.3) 0.600 

C-reactive protein (mg/L) 147.1 (79.2, 241.1) 135.6 (62.5, 219.0) 0.160 

Procalcitonin (µg/L) 0.3 (0.2, 1.1) 0.4 (0.2, 1.0) 0.710 

D-dimers (µg/L) 1.4 (0.8, 3.3) 1.2 (0.7, 2.8) 0.030 

Lactate dehydrogenase (U/L) 522.0 (376.0, 701.0) 494.0 (387.0, 691.5) 0.980 

Ferritin (µg/L) 1527.0 (1002.0, 2801.0) 1141.0 (657.8, 2205.0) 0.010 

Bilirubin (µmol/L) 9.3 (6.1, 14.0) 6.0 (1.0, 9.8) <0.010 

Creatinine (µmol/L) 83.8 (66.8, 114.0) 84.0 (62.0, 109.6) 0.460 

Creatine kinase (U/L) 139.0 (64.0, 365.0) 177.5 (88.0, 350.5) 0.100 

Myoglobin (µg/L) 77.0 (50.2, 294.0) 78.5 (36.0, 203.5) 0.670 

Troponin (ng/L) 18.0 (10.0, 45.9) 15.3 (9.0, 34.0) 0.300 

Albumin (g/L) 29.0 (25.0, 33.0) 30.0 (26.0, 33.0) 0.600 

ICU outcome    

ICU survival 223 (80.5) 249 (66.9) <0.001 

ICU length of stay (days) 17.8 (16.7) 20.3 (13.9) 0.068 

Estimates are reported as mean (standard deviation) or median (IQR) according to data 

distribution. 

APACHE: Acute Physiology and Chronic Health disease Classification System; COVID-19: 

Coronavirus disease 2019; ICU: Intensive Care Unit; IQR: Interquartile range; SAPS: 

Simplified Acute Physiologic Score; SOFA: Sequential Organ Failure Assessment. 

 

                  


