72 research outputs found

    Molecular Features for Probing Small Amphiphilic Molecules with Self-Assembled Monolayer Protected Nanoparticles

    Get PDF
    The sensing of small molecules poses the challenge to develop devices able to discriminate between compounds that may be structurally very similar. Here, attention has been paid to the use of self-assembled monolayer (SAM)-protected gold nanoparticles since they enable a modular approach to tune single-molecule affinity and selectivity simply by changing functional moieties (i.e. covering ligands), alongside with multivalent molecular recognition. To date, the discovery of monolayers suitable for a specific molecular target relies on trial-and-error approaches, with ligand chemistry being the main criteria used to modulate selectivity and sensitivity. By using molecular dynamics, we showcase that either individual molecular characteristics and/or collective features such as ligand flexibility, monolayer organization, ligand local ordering, and interfacial solvent properties can also be exploited conveniently. The knowledge of the molecular mechanisms that drive the recognition of small molecules on SAM covered nanoparticles will critically expand our ability to manipulate and control such supramolecular systems

    Probing multiscale factors affecting the reactivity of nanoparticle-bound molecules

    Get PDF
    I. K. M., W. E., E. J. H, S. S. and E. R. K. are grateful for funding from the Leverhulme Trust [RPG-2015-042], the Engineering and Physical Sciences Research Council [EP/K016342/1], the University of St Andrews, and the EPSRC Centre for Doctoral Training in Critical Resource Catalysis (CRITICAT) [Ph.D. studentship to SS: EP/L016419/1]. D. M. and P.P thank the Italian Ministry of University Research (MIUR) for funding [RBSI14PBC6].The structures and physicochemical properties of surface-stabilizing molecules play a critical role in defining the properties, interactions, and functionality of hybrid nanomaterials such as monolayer-stabilized nanoparticles. Concurrently, the distinct surface-bound interfacial environment imposes very specific conditions on molecular reactivity and behavior in this setting. Our ability to probe hybrid nanoscale systems experimentally remains limited, yet understanding the consequences of surface confinement on molecular reactivity is crucial for enabling predictive nanoparticle synthon approaches for postsynthesis engineering of nanoparticle surface chemistry and construction of devices and materials from nanoparticle components. Here, we have undertaken an integrated experimental and computational study of the reaction kinetics for nanoparticle-bound hydrazones, which provide a prototypical platform for understanding chemical reactivity in a nanoconfined setting. Systematic variation of just one molecular-scale structural parameter—the distance between reactive site and nanoparticle surface—showed that the surface-bound reactivity is influenced by multiscale effects. Nanoparticle-bound reactions were tracked in situ using 19F NMR spectroscopy, allowing direct comparison to the reactions of analogous substrates in bulk solution. The surface-confined reactions proceed more slowly than their solution-phase counterparts, and kinetic inhibition becomes more significant for reactive sites positioned closer to the nanoparticle surface. Molecular dynamics simulations allowed us to identify distinct supramolecular architectures and unexpected dynamic features of the surface-bound molecules that underpin the experimentally observed trends in reactivity. This study allows us to draw general conclusions regarding interlinked structural and dynamical features across several length scales that influence interfacial reactivity in monolayer-confined environments.PostprintPeer reviewe

    Patchy and Janus Nanoparticles by Self-Organization of Mixtures of Fluorinated and Hydrogenated Alkanethiolates on the Surface of a Gold Core

    Get PDF
    The spontaneous self-organization of dissimilar ligands on the surface of metal nanoparticles is a very appealing approach to obtain anisotropic "spherical". systems. In addition to differences in ligand length and end groups, a further thermodynamic driving force to control the self-assembled monolayer organization may become available if the ligands are inherently immiscible, as is the case of hydrogenated (H-) and fluorinated (F-) species. Here, we validate the viability of this approach by combining F-19 NMR experiments and multiscale molecular simulations on large sets of mixed-monolayer-protected gold nanoparticles (NPs). The phase segregation of blends of F- and H-thiolates grafted on the surface of gold NPs allows a straightforward approach to patterned mixed monolayers, with the shapes of the monolayer domains being encoded in the structure of the F/H-thiolate ligands. The results obtained from this comprehensive study offer molecular design rules to achieve a precise control of inorganic nanoparticles protected by specifically patterned monolayers

    Spotting local environments in self-assembled monolayer-protected gold nanoparticles

    Get PDF
    Organic-inorganic (O-I) nanomaterials are versatile platforms for an incredible high number of applications, ranging from heterogeneous catalysis, molecular sensing, cell targeting, imaging, cancer diagnosis and therapy, just to name a few. Much of their potential stems from the unique control of organic environments around inorganic sites within a single O-I nanomaterial, which allows for new properties inaccessible using purely organic or inorganic materials. Structural and mechanistic characterization plays a key role in understanding and rationally designing such hybrid nanoconstructs. Here, we introduce a general methodology to identify and classify local (supra)molecular environments in an archetypal class of O-I nanomaterials, i.e. self-assembled monolayer-protected gold nanoparticles (SAM-AuNPs). By using an atomistic machine-learning guided workflow based on the Smooth Overlap of Atomic Positions (SOAP) descriptor, we analyze a collection of chemically different SAM-AuNPs, and detect and compare local environments in a way that is agnostic and automated, i.e. with no need of a-priori information and minimal user intervention. In addition, the computational results coupled with experimental electron spin resonance measurements prove that is possible to have more than one local environment inside SAMs, being thickness of the organic shell and solvation primary factors in determining number and nature of multiple co-existing environments. These indications are extended to complex mixed hydrophilic-hydrophobic SAMs. This work demonstrates that it is possible to spot out and compare local molecular environments in SAM-AuNPs exploiting atomistic machine-learning approaches, establishes ground rules to control them, and holds the potential for rational design of O-I nanomaterials instructed from data

    Gold nanoparticles with\ua0patterned surface monolayers for\ua0nanomedicine: current perspectives

    Get PDF
    Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areassuch as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns\u2014typically patched, striped or Janus-like domains\u2014represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology providesnanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation

    Shared Genetic Risk Factors Across Carbamazepine-Induced Hypersensitivity Reactions

    Get PDF
    Carbamazepine (CBZ) causes life-threating T-cell-mediated hypersensitivity reactions, including serious cutaneous adverse reactions (SCARs) and drug-induced liver injury (CBZ-DILI). In order to evaluate shared or phenotype-specific genetic predisposing factors for CBZ hypersensitivity reactions, we performed a meta-analysis of two genomewide association studies (GWAS) on a total of 43 well-phenotyped Northern and Southern European CBZ-SCAR cases and 10,701 population controls and a GWAS on 12 CBZ-DILI cases and 8,438 ethnically matched population controls. HLA-A*31:01 was identified as the strongest genetic predisposing factor for both CBZ-SCAR (odds ratio (OR) = 8.0; 95% CI 4.10-15.80; P = 1.2 x 10(-9)) and CBZ-DILI (OR = 7.3; 95% CI 2.47-23.67; P = 0.0004) in European populations. The association with HLA-A*31:01 in patients with SCAR was mainly driven by hypersensitivity syndrome (OR = 12.9; P = 2.1 x 10(-9)) rather than by Stevens-Johnson syndrome/toxic epidermal necrolysis cases, which showed an association with HLA-B*57:01. We also identified a novel risk locus mapping to ALK only for CBZ-SCAR cases, which needs replication in additional cohorts and functional evaluation.Peer reviewe

    Data monitoring roadmap. The experience of the Italian Multiple Sclerosis and Related Disorders Register

    Get PDF
    Introduction Over the years, disease registers have been increasingly considered a source of reliable and valuable population studies. However, the validity and reliability of data from registers may be limited by missing data, selection bias or data quality not adequately evaluated or checked.This study reports the analysis of the consistency and completeness of the data in the Italian Multiple Sclerosis and Related Disorders Register.MethodsThe Register collects, through a standardized Web-based Application, unique patients.Data are exported bimonthly and evaluated to assess the updating and completeness, and to check the quality and consistency. Eight clinical indicators are evaluated.ResultsThe Register counts 77,628 patients registered by 126 centres. The number of centres has increased over time, as their capacity to collect patients.The percentages of updated patients (with at least one visit in the last 24 months) have increased from 33% (enrolment period 2000-2015) to 60% (enrolment period 2016-2022). In the cohort of patients registered after 2016, there were >= 75% updated patients in 30% of the small centres (33), in 9% of the medium centres (11), and in all the large centres (2).Clinical indicators show significant improvement for the active patients, expanded disability status scale every 6 months or once every 12 months, visits every 6 months, first visit within 1 year and MRI every 12 months.ConclusionsData from disease registers provide guidance for evidence-based health policies and research, so methods and strategies ensuring their quality and reliability are crucial and have several potential applications

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development
    corecore