321 research outputs found

    A new emphasis on root traits for perennial grass and legume varieties with environmental and ecological benefits

    Get PDF
    Grasslands cover a significant proportion of the agricultural land within the UK and across the EU, providing a relatively cheap source of feed for ruminants and supporting the production of meat, wool and milk from grazing animals. Delivering efficient animal production from grassland systems has traditionally been the primary focus of grassland‐based research. But there is increasing recognition of the ecological and environmental benefits of these grassland systems and the importance of the interaction between their component plants and a host of other biological organisms in the soil and in adjoining habitats. Many of the ecological and environmental benefits provided by grasslands emanate from the interactions between the roots of plant species and the soil in which they grow. We review current knowledge on the role of grassland ecosystems in delivering ecological and environmental benefits. We will consider how improved grassland can deliver these benefits, and the potential opportunities for plant breeding to improve specific traits that will enhance these benefits whilst maintaining forage production for livestock consumption. Opportunities for exploiting new plant breeding approaches, including high throughput phenotyping, and for introducing traits from closely related species are discussed

    Simulation of greenhouse gases following land-use change to bioenergy crops using the ECOSSE model : a comparison between site measurements and model predictions

    Get PDF
    This work contributes to the ELUM (Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial) project, which was commissioned and funded by the Energy Technologies Institute (ETI). We acknowledge the E-OBS data set from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu).Peer reviewedPublisher PD

    New <sup>40</sup>Ar/<sup>39</sup>Ar dating of the Antrim Plateau Volcanics, Australia: clarifying an age for the eruptive phase of the Kalkarindji continental flood basalt province

    Get PDF
    The Kalkarindji flood basalt province of northern Australia erupted in the mid-Cambrian. Today the province consists of scattered volcanic and intrusive suites, the largest being the Antrim Plateau Volcanics (APV) in Northern Territory. Accurate dating of Kalkarindji has proved challenging with previous studies focused on minor volcanics and intrusive dykes in Northern Territory and Western Australia. These previously published data, corrected to the same decay constants, range from 512.8 to 509.6 ± 2.5 Ma [2σ], placing Kalkarindji in apparent synchronicity with the Cambrian Stage 4–5 biotic crisis at 510 ± 1 Ma. This study utilises 40Ar/39Ar dating of basalts from the APV to accurately date the major volcanic eruptions in this province. Results yield an age of 508.0–498.3 ± 5.5 Ma [2σ], indicating the APV is younger than the intrusives. These dates allude to a relative timing discrepancy, where intrusive activity in the North Australian Craton preceded the eruption of the APV as the last magmatic activity in the region. The determination of these largest eruptions to be later than 510 Ma, effectively disassociates Kalkarindji lavas from being a major cause of the 510 Ma biotic crisis, but cannot definitively discount any deleterious effects on the fragile Cambrian ecosystem

    Standardising outcomes for clinical trials and systematic reviews

    Get PDF
    Fifteen years ago, what was to become OMERACT met for the first time in The Netherlands to discuss ways in which the multitude of outcomes in assessments of the effects of treatments for rheumatoid arthritis might be standardised. In Trials, Tugwell et al have described the need for, and success of, this initiative [1] and Cooney and colleagues have set out their plans for a corresponding initiative for ulcerative colitis [2]. Why do we need such initiatives? What\u27s the problem? And are these and other initiatives the solution

    The mechanisms and processes of connection: developing a causal chain model capturing impacts of receiving recorded mental health recovery narratives.

    Get PDF
    BACKGROUND: Mental health recovery narratives are a core component of recovery-oriented interventions such as peer support and anti-stigma campaigns. A substantial number of recorded recovery narratives are now publicly available online in different modalities and in published books. Whilst the benefits of telling one's story have been investigated, much less is known about how recorded narratives of differing modalities impact on recipients. A previous qualitative study identified connection to the narrator and/or to events in the narrative to be a core mechanism of change. The factors that influence how individuals connect with a recorded narrative are unknown. The aim of the current study was to characterise the immediate effects of receiving recovery narratives presented in a range of modalities (text, video and audio), by establishing the mechanisms of connection and the processes by which connection leads to outcomes. METHOD: A study involving 40 mental health service users in England was conducted. Participants were presented with up to 10 randomly-selected recovery narratives and were interviewed on the immediate impact of each narrative. Thematic analysis was used to identify the mechanisms of connection and how connection leads to outcome. RESULTS: Receiving a recovery narrative led participants to reflect upon their own experiences or those of others, which then led to connection through three mechanisms: comparing oneself with the narrative and narrator; learning about other's experiences; and experiencing empathy. These mechanisms led to outcomes through three processes: the identification of change (through attending to narrative structure); the interpretation of change (through attending to narrative content); and the internalisation of interpretations. CONCLUSIONS: This is the first study to identify mechanisms and processes of connection with recorded recovery narratives. The empirically-based causal chain model developed in this study describes the immediate effects on recipients. This model can inform selection of narratives for use in interventions, and be used to support peer support workers in recounting their own recovery narratives in ways which are maximally beneficial to others

    Resolving and parameterising the ocean mesoscale in earth system models

    Get PDF
    Purpose of Review. Assessment of the impact of ocean resolution in Earth System models on the mean state, variability, and future projections and discussion of prospects for improved parameterisations to represent the ocean mesoscale. Recent Findings. The majority of centres participating in CMIP6 employ ocean components with resolutions of about 1 degree in their full Earth Systemmodels (eddy-parameterising models). In contrast, there are alsomodels submitted toCMIP6 (both DECK and HighResMIP) that employ ocean components of approximately 1/4 degree and 1/10 degree (eddy-present and eddy-rich models). Evidence to date suggests that whether the ocean mesoscale is explicitly represented or parameterised affects not only the mean state of the ocean but also the climate variability and the future climate response, particularly in terms of the Atlantic meridional overturning circulation (AMOC) and the Southern Ocean. Recent developments in scale-aware parameterisations of the mesoscale are being developed and will be included in future Earth System models. Summary. Although the choice of ocean resolution in Earth System models will always be limited by computational considerations, for the foreseeable future, this choice is likely to affect projections of climate variability and change as well as other aspects of the Earth System. Future Earth System models will be able to choose increased ocean resolution and/or improved parameterisation of processes to capture physical processes with greater fidelity

    Thermal Cycle Testing of the Powersphere Engineering Development Unit

    Get PDF
    During the past three years the team of The Aerospace Corporation, Lockheed Martin Space Systems, NASA Glenn Research Center, and ILC Dover LP have been developing a multifunctional inflatable structure for the PowerSphere concept under contract with NASA (NAS3-01115). The PowerSphere attitude insensitive solar power-generating microsatellite, which could be used for many different space and Earth science purposes, is ready for further refinement and flight demonstration. The development of micro- and nanosatellites requires the energy collection system, namely the solar array, to be of lightweight and small size. The limited surface area of these satellites precludes the possibility of body mounting the solar array system for required power generation. The use of large traditional solar arrays requires the support of large satellite volumes and weight and also requires a pointing apparatus. The current PowerSphere concept (geodetic sphere), which was envisioned in the late 1990 s by Mr. Simburger of The Aerospace Corporation, has been systematically developed in the past several years.1-7 The PowerSphere system is a low mass and low volume system suited for micro and nanosatellites. It is a lightweight solar array that is spherical in shape and does not require a pointing apparatus. The recently completed project culminated during the third year with the manufacturing of the PowerSphere Engineering Development Unit (EDU). One hemisphere of the EDU system was tested for packing and deployment and was subsequently rigidized. The other hemisphere was packed and stored for future testing in an uncured state. Both cured and uncured hemisphere components were delivered to NASA Glenn Research Center for thermal cycle testing and long-term storage respectively. This paper will discuss the design, thermal cycle testing of the PowerSphere EDU

    A rapid research needs appraisal methodology to identify evidence gaps to inform clinical research priorities in response to outbreaks-results from the Lassa fever pilot

    Get PDF
    Abstract Background: Infectious disease epidemics are a constant threat, and while we can strengthen preparedness in advance, inevitably, we will sometimes be caught unaware by novel outbreaks. To address the challenge of rapidly identifying clinical research priorities in those circumstances, we developed and piloted a protocol for carrying out a systematic, rapid research needs appraisal (RRNA) of existing evidence within 5 days in response to outbreaks globally, with the aim to inform clinical research prioritization. Methods: The protocol was derived from rapid review methodologies and optimized through effective use of predefined templates and global time zones. It was piloted using a Lassa fever (LF) outbreak scenario. Databases were searched from 1969 to July 2017. Systematic reviewers based in Canada, the UK, and the Philippines screened and extracted data using a systematic review software. The pilot was evaluated through internal analysis and by comparing the research priorities identified from the data, with those identified by an external LF expert panel. Results: The RRNA pilot was completed within 5 days. To accommodate the high number of articles identified, data extraction was prioritized by study design and year, and the clinical research prioritization done post-day 5. Of 118 potentially eligible articles, 52 met the data extraction criteria, of which 46 were extracted within the 5-day time frame. The RRNA team identified 19 clinical research priorities; the expert panel independently identified 21, of which 11 priorities overlapped. Each method identified a unique set of priorities, showing that combining both methods for clinical research prioritization is more robust than using either method alone. Conclusions: This pilot study shows that it is feasible to carry out a systematic RRNA within 5 days in response to a (re-) emerging outbreak to identify gaps in existing evidence, as long as sufficient resources are identified, and reviewers are experienced and trained in advance. Use of an online systematic review software and global time zones effectively optimized resources. Another 3 to 5 days are recommended for review of the extracted data and to formulate clinical research priorities. The RRNA can be used for a “Disease X” scenario and should optimally be combined with an expert panel to ensure breadth and depth of coverage of clinical research priorities. Keywords: Emerging infectious diseases, Clinical research priorities, Outbreak response, Lassa fever, Rapid research needs appraisal methodolog
    • 

    corecore