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Abstract 

The Kalkarindji flood basalt province of northern Australia erupted in the mid-Cambrian. Today the 

province consists of scattered volcanic and intrusive suites, the largest being the Antrim Plateau 

Volcanics (APV) in Northern Territory. Accurate dating of Kalkarindji has proved challenging with 

previous studies focused on minor volcanics and intrusive dykes in Northern Territory and Western 

Australia. These previously published data, corrected to the same decay constants, range from 

512.8-509.6 ± 2.5 Ma [2σ], placing Kalkarindji in apparent synchronicity with the Cambrian Stage 4-5 

biotic crisis at 510 ± 1 Ma. This study utilises 40Ar/39Ar dating of basalts from the APV to accurately 

date the major volcanic eruptions in this province. Results yield an age of 508.0-498.3 ± 5.5 Ma [2σ], 

indicating the APV is younger than the intrusives. These dates allude to a relative timing discrepancy, 

where intrusive activity in the North Australian Craton preceded the eruption of the APV as the last 

magmatic activity in the region. The determination of these largest eruptions to be later than 510 

Ma, effectively disassociates Kalkarindji lavas from being a major cause of the 510 Ma biotic crisis, 

but cannot definitively discount any deleterious effects on the fragile Cambrian ecosystem. 

 

 

Keywords 

Kalkarindji; LIP, flood lava volcanism; Ar-Ar dating; multi-stage magmatism; mass extinctions  
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Large igneous provinces (LIPs), and in particular continental flood basalt provinces (CFBPs), provide 

an important reference point in geological time due to their significance both as massive, 

geologically rapid igneous events and their links to environmental change and extinction (Wignall, 

2001; Bond and Wignall, 2014). The relationship between CFBPs and mass extinctions has been 

exhaustively explored by correlating the absolute dating of provinces with the established 

stratigraphical ages of known mass extinctions through the Phanerozoic (Wignall, 2001; Courtillot 

and Renne, 2003; Kravchinsky, 2012; Bond and Wignall, 2014). Of the ‘big 5’ mass extinction events, 

three can be confidently correlated with CFBPs - Siberian Traps & end Permian, Central Atlantic 

Magmatic Province (CAMP) & end Triassic, and Deccan Traps & end Cretaceous - whilst the two 

older events (end Ordovician and Late Devonian) do not yet have such a compelling body of 

evidence. Although recent studies have speculated on these correlations using Hg as a tracer for LIP 

volcanism (Jones et al., 2017; Racki et al., 2018). Courtillot and Renne (2003) also identified other 

significant extinction events that appear to correlate with CFBPs such as the end Guadalupian 

extinction and the Emeishan flood basalt province, whilst smaller provinces, like Columbia River 

Basalt Province appear to have had little to no environmental impact (Bond and Wignall, 2014).  

Kalkarindji is the oldest CFBP in the Phanerozoic, having erupted onto the North Australian Craton 

during the mid-Cambrian. Previous dating of samples associated with the Kalkarindji CFBP has 

demonstrated synchronicity with the Early - Middle Cambrian (EMC; stage 4-5) biotic crisis dated at 

510 ± 1 Ma (Jourdan et al., 2014). However, correlation does not equate to causation, yet the LIP 

and extinction link has been strongly implied. 

Debate continues as to whether volatile release from CFBPs into the atmosphere is an effective kill 

mechanism (Self et al., 2008; Bond and Wignall, 2014; Schmidt et al., 2016). Total period of eruption, 

pulsed or continuous eruptions, and the buffering of the atmosphere are the main discussion points 

around whether CFBPs are able to overload the atmosphere to deliver a toxic amount of volatiles 

into the biotic system. For example, a CFBP with a short total period that comprised continuous 
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eruptions may have a larger effect on the environment than a longer total period with pulsed 

eruptions. This scenario depends upon the ability of the atmosphere to recover after each small pulse, 

but may be unable to buffer against a continuous influx of toxic volatiles and thus be overcome.  

Recent studies of the Deccan argue for paroxysmal pulses shorter than 1 Myr, based upon high-

resolution palaeomagnetic and radiometric dating techniques (Chenet et al., 2008, 2009; Renne et 

al., 2015; Schoene et al., 2015). This rapid time period is well studied in the Mesozoic - Cenozoic 

(Courtillot and Renne, 2003; Jerram and Widdowson, 2005) and is dependent on the precision of the 

adopted dating technique. The accurate dating of Kalkarindji (Hanley and Wingate, 2000; Glass and 

Phillips, 2006; Evins et al., 2009; Jourdan et al., 2014) extends this record in the Phanerozoic as part 

of an increase in the dating of ancient CFBPs in the last decade (Ernst et al., 2008; Ernst, 2014). As 

most dates for Kalkarindji are from intrusive material, new dating of the extrusive outcrop is needed 

to clarify an age for the main eruptive phase of magmatism and improve our understanding of any 

LIP - mass extinction link in the early Phanerozoic. 

 

Geology of Kalkarindji CFBP 

The Kalkarindji CFBP consists of five individual extrusive sub-provinces extending semi-continuously 

across Western Australia (WA), Northern Territory (NT) and NW Queensland (Glass and Phillips, 

2006) and several geochemically correlated dykes in Western Australia (Hanley and Wingate, 2000; 

Macdonald et al., 2005; Jourdan et al., 2014) (Fig. 1). In total these outcrops cover an estimated 

55,000 km2 (Bultitude, 1972, 1976; Cutovinos et al., 2002) and would have had an estimated areal 

extent of ~ 400,000 km2 (Veevers, 2001), and a volume of ~1.5 x 105 km3 (Glass and Phillips, 2006) as 

a single connected lava field, potentially making this LIP comparable in size and volume to the well 

preserved Columbia River Basalt Province, USA (Coffin and Eldholm, 1994; Bryan et al., 2010).  

The Antrim Plateau Volcanics (APV), the largest sub-province cropping out over a semi-continuous 

area of c. 50,000 km2 in NT and WA, with a maximum lava pile thickness of 1.1 km (Mory and Beere, 
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1988; Cutovinos et al., 2002) is composed of mainly undifferentiated aphyric basaltic andesite with 

four minor, recognisable members contained within the basalt pile: the Blackfella Rockhole Member, 

Bingy Bingy Basalt Member, Mt Close Chert and Malley Springs Sandstone members (Mory and 

Beere, 1985; Cutovinos et al., 2002; Marshall et al., 2016). The intercalated sediment members occur 

in localised areas of the province and cannot be considered stratigraphically important, besides 

indicating periods of volcanic repose and marine/lacustrine inundation of the lava pile. 

Unconformably underlying the volcanics are a series of Proterozoic quartz to arkosic sandstone basin 

units and Archean basement fragments of the North Australian Craton (Sweet et al., 1974a, 1974b; 

Scott et al., 2000). The APV can be split into two ‘limbs’ - a thin (up to 200 m thick) eastern limb and 

a thicker (up to 1.1 km thick) western limb (Fig. 1). The vast majority of lava flows ranging from 5 – 

50 m thickness, are seen to be near flat-lying and have been subject to little to no tectonic influence. 

 

Previous geochronology 

Recent radiometric dating indicates that the Kalkarindji basalts erupted in the mid-Cambrian, with a 

spread of ages derived from different outcrops and via different methods (Bultitude, 1972; Hanley 

and Wingate, 2000; Macdonald et al., 2005; Glass and Phillips, 2006; Evins et al., 2009; Jourdan et 

al., 2014). The initial comprehensive geological mapping of the Antrim Plateau and surrounding sub-

provinces by Bultitude (1971, 1972) and Sweet et al. (1971, 1974a, 1974b) provided the first 

absolute dating of the province through K-Ar geochronology, yielding ages of 500 ± 12 Ma and 511 ± 

12 Ma (Bultitude, 1972), attributed to samples collected from the minor satellite provinces of the 

Nutwood Downs Volcanics and Helen Springs Volcanics, respectively (Fig. 1). The first robust date in 

30 years was produced from zircons collected from the doleritic Milliwindi Dyke in the north west 

Kimberley region (Hanley and Wingate, 2000). This initial zircon 207Pb*/206Pb* date (513 ± 12 Ma, 

95% confidence), is only the third ever reliable date; but whilst this was from an outcrop 

geochemically indistinct from the Antrim Plateau Volcanics and thus considered part of the greater 
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Kalkarindji CFBP (Glass and Phillips, 2006), it is nevertheless separated from the extrusive succession 

by the Halls Creek and King Leopold Orogenic belts. This date was later corroborated by a second U-

Pb SHRIMP zircon date (508.0 ± 5.0 Ma, 95% confidence) measured on zircons from the Boondawari 

Fm - a series of dolerite dykes cutting through the Officer Basin in Western Australia (Macdonald et 

al., 2005). The Macdonald et al. sample is linked to Kalkarindji based upon the coincidence of the 

ages of the two Western Australian dolerites only.  

For ease of comparison between published dates and samples of this study, all 40Ar/39Ar ages have 

here been recalibrated to the constants defined by Min et al. (2000) and the standard values 

calculated by Renne et al. (2010) (Table 1). Glass and Phillips (2006) conducted the first 40Ar/39 Ar 

dating of the Kalkarindji through the collection of plagioclase bearing samples at one location in the 

SW of the Antrim Plateau Volcanics producing an age plateau at 509.9 ± 2.2 Ma; reported at 2σ 

(LB011) and a second sample from the Helen Springs Volcanics, which produced reliable plateaux at 

512.8 ± 1.6 Ma; 2σ (HS002(1)) and 511.3 ± 2.0 Ma; 2σ (HS002(2)). Evins et al. (2009) investigated the 

Table Hill Volcanics, linking this small extrusive lava outcrop in southern Western Australia (Grey et 

al., 2005) to Kalkarindji through a matching of the geochemical signature and an 40Ar/39Ar age of 

509.6 ± 2.5 Ma; 2σ. Jourdan et al. (2014) used 40Ar/39Ar dating calibrated to Renne et al. (2011), 

paired with new U-Pb mineral dating to precisely place the province at 510 - 511 Ma. After 

corrections and homogenised calibration to the most recently determined decay constants most 

dates of material associated with the Kalkarindji cluster around 510 Ma (Fig. 2).  

However, Jourdan et al. re-dated the exact same zircon samples from Hanley and Wingate (2000), 

dolerite dykes in the Officer Basin and a new found dyke in the Canning basin, all intrusive bodies in 

Western Australia with presumed relationships to the APV. These ages, these authors propose, 

makes the Kalkarindji CFBP synchronous with the EMC at 510 ± 1 Ma. (Landing et al., 1998; Harvey et 

al., 2011; Jourdan et al., 2014). This boundary represents the first significant biotic turnover in the 

fossil record (~ 45 % of all genera became extinct; Keller, 2005) following the onset of the Cambrian 
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explosion at c. 542 Ma (Bowring et al., 2007; Maloof et al., 2010). Crucially, all but one of these dates 

represent the age of intrusives and small volcanic outliers in the Kalkarindji province and should not 

necessarily be interpreted as fully representative of the province as a whole. Whilst it has been 

proven that intrusive magmatism may play a larger role than previously thought in producing 

deleterious environmental effects when intruded into volatile rich sediments (Burgess et al., 2017; 

Heimdal et al., 2018), the quartzite and arkosic sandstone units in the cratonic basement underlying 

Kalkarindji point toward voluminous effusive eruptions as the being major contributor to the 

volatiles released (Self et al., 2005, 2006). 

Clearly more data are needed to confidently define any causal relationship between the LIP and 

biotic crisis, especially samples from the largest volcanic province – the Antrim Plateau Volcanics. 

Thus, the currently accepted “age” of Kalkarindji is only indicative of an approximate synchronicity to 

this ‘extinction’. Accordingly, this study presents further robust and reliable dates from the APV to 

accurately date these eruptions. 

 

Rationale and sample selection 

One of the key problems in determining accurate 40Ar/39Ar dates from the extrusive Kalkarindji 

volcanics is the paucity of unweathered material. Exposure of the eruptive stratigraphy to tropical, 

sub-tropical and semi-arid climates for the greater part of the Phanerozoic has resulted in extreme 

pervasive weathering and profound mineral alteration at outcrop level. In effect, the best materials 

are either those recovered from intrusive bodies, material from deep boreholes or recently 

uncovered sections such as road-stone quarries. Whilst intrusive bodies have, so far, yielded 

promising 40Ar/39Ar and U-Pb dates, the precise relationship between these intrusive bodies and the 

Kalkarindji extrusive lavas (eg. APV) remains unclear.  
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Samples were selected based on a rigorous test for alteration, their geographic and stratigraphic 

location within the APV, and their abundance of plagioclase phenocrysts. Two samples were selected 

from the base of a borehole (BMR Limbunya 1 - LB1; Bultitude, 1971) and three others from surface 

samples collected during the 2012 field season from an abandoned quarry (VCAQ), a newly 

uncovered river cutting (BTDF), and from the Bingy Bingy Basalt Member atop a mesa (NLBT), which 

is in close proximity to, and in the same formation as the LB011 sample analysed by Glass and 

Phillips (2006). 

 

Determining the degree of alteration 

All samples collected during the 2012 field season were tested for their suitability for geochronology 

using two methods. Firstly samples were analysed by whole-rock XRF at the Open University (Table 

S2)and assessed using two alteration indices - the chemical index of alteration (CIA - Nesbitt and 

Young, 1982) and mafic index of alteration (MIA - Babechuk et al., 2014). The MIA builds upon the 

CIA index through the addition of the mafic mineral constituent elements Fe and Mg. The MIA aims 

to address the lack of sensitivity in other indices to more mafic parent rocks such as basalt and 

basaltic andesites and can be used in either oxidising (MIAO) or reducing (MIAR) conditions. Figure 3 

shows that in all three of these indices, unweathered rocks ae considered to be those which plot 

with low index numbers, commonly < 50. Unhelpfully, the majority of samples from the APV plot in 

the unweathered portion (< 50) on all three indices, despite weathering effects such as desert rind 

and discolouration being obvious in hand sample. 

To discriminate further, petrography was utilised to identify nuances within the crystal structure. 

However, alteration in a petrographic sense is a subjective quality and thus difficult to define and 

quantify. It is often obvious that a rock has undergone alteration, but to what degree is dependent 

upon the observer and their understanding of a fresh sample for comparison. Therefore a relative 
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scale between samples is often the easiest way to describe alteration in a sample set. In this study 

samples were systematically analysed by microscopy and assigned a score on a relative ten-point 

scale which allows for the variability of mineral alteration to be assessed and a value determined 

through three main factors: modal mineralogy, quality of crystal boundaries, and the amount of 

mineral fracturing and leaching (photomicrographs and geochemical data of samples can be found in 

supplementary material). Samples were then ranked according to three factors: low alteration score, 

geographical location, and stratigraphic position. From this ranking, five samples with a greater 

abundance of plagioclase phenocrysts were chosen for geochronological analysis.  

The highest ranked samples were those from the base of BMR Limbunya 1 (LB1) borehole. With a 

low alteration score based on their crisp crystal boundaries, abundance of primary unaltered 

plagioclase and a lack of secondary mineral growth, paired with low LOI values and low CIA and MIA 

index values, highlights the freshness of these samples. These samples are seen to be 

microcrystalline and were analysed by whole rock step-heating. The freshest surface based sample is 

VCAQ-001, displaying clear albite twinning on plagioclase phenocrysts with little alteration present in 

thin section. Chemically, it has a low LOI value (0.58 wt.%) and low weathering indices scores. 

 

Analytical techniques 

Two different methods were employed to analyse the samples. The flexibility of using laser-based 

analysis allows for both step-heating of grains and of whole rock samples, as well as in situ spot 

sampling. This is using the same laser, gettering system and mass spectrometer, thus reducing 

instrument to instrument correlation issues. Some secondary analyses were made using a Nu 

Instruments Noblesse noble gas spectrometer for sensitivity correlations. 

 

Step-heating 
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A step-heating methodology was performed through heating the sample with sequentially increasing 

laser strength until the whole sample is a fused bead, and has thus released all volatile gases. 

Samples will yield the age of eruption if the rock has been a ‘closed system’, with respect to Ar 

diffusion/loss, from the time of crystallisation to measurement; it will have retained all initial Ar and 

K, thus the age determined at each step should be constant and therefore statistically meaningful, 

yielding an accurate dating of the eruption (McDougall and Harrison, 2000; Faure and Mensing, 

2005). Should the rock have been exposed to weathering or subjected to hydrothermal alteration, 

minerals will have become altered, introducing the possibility of opening fast diffusion pathways for 

the release of Ar from the system. In this instance, the Ar in the whole rock becomes variable from 

mineral to mineral, causing each step in the experiment to be variable depending upon whether the 

minerals heated are depleted in Ar or not. This open system will typically yield a younger ‘apparent 

age’ often with greater analytical errors. 

 

in situ spot sampling 

The issue of alteration causing apparent ages can be avoided by in situ spot sampling of unaltered 

grains, using a point source laser to precisely heat an unaltered patch of K-rich phenocryst whilst 

leaving any altered groundmass untouched. This should in theory produce closed-system results and 

‘real’ dates, however as this method focuses on single spots within grains, the volume of Ar 

produced is small and so it becomes harder to achieve high precision consistently, thus reducing the 

likelihood of yielding a statistically meaningful result. A comparison is also drawn between the 

relatively homogenous groundmass which is very clearly altered and K-rich phenocrysts to assess the 

level of alteration which affected the phenocrysts. 

 

Analysis methodology 
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Selected samples were prepared for analysis as either 100 μm thick sections (BTDF-001, NLBT-006, 

VCAQ-001) or as crushate (LB1-970-975, LB1-955-960). Crushed samples were produced from 100 

μm thick sections by broken mortar and pestle into <1mm fractions. Even though these are the least 

altered samples from the APV, no acid leach was applied owing to the potential to dissolve the 

available material to untestable quantities. All samples were bathed in acetone and once dry were 

split into two sets, packed in foils and weighed. Samples were irradiated for 5:34:08 hours in a series 

of 17 steps from the 16th - 29th July 2013 in the open-pool type 5 MW medium flux reactor at 

McMaster Nuclear Reactor, McMaster University, Hamilton, Ontario and analysed in batches from 

13th November 2013 - 7th March 2014 at the 40Ar/39Ar and Noble Gas laboratory at the Open 

University using an SPI CW 1062 nm infra-red (IR) fibre laser. After passing through a liquid nitrogen 

trap, extracted gases were cleaned for 5 minutes using two SAES AP-10 getters running at 450°C and 

a third at room temperature, following which the gases were initially analysed using a MAP 215-50 

mass spectrometer. Secondary measurements were made using the same laser and gas clean up 

system connected to a Nu Noblesse mass spectrometer in single collector mode. Analyses were 

corrected using a calculated 40Ar/36Ar discrimination value of 283 for the MAP-215- 50 and 295 for 

the Nu Noblesse (using a calibration noble gas mixture of known composition). System blanks were 

measured before and after every one or two sample analysis steps to check for drift and background 

interference. Gas clean-up and inlet is fully automated, with measurement of 40Ar, 39Ar, 38Ar, 37Ar, 

and 36Ar, each for ten scans, and the final measurements are linear extrapolations back to the inlet 

time. Irradiation flux was monitored using the GA1550 biotite standard with an age of 99.77 ± 0.1 

(Renne et al., 2010). Sample J values were calculated by linear interpolation between two bracketing 

standards, placed between every 10 samples in the irradiation tube. 

Results were corrected for 37Ar and 39Ar decay, and neutron-induced interference reactions. The 

following correction factors were used: (39Ar/37Ar)Ca = 0.00065 ± 0.00000325, (36Ar/37Ar)Ca = 0.000265 

± 0.000001325, and (40Ar/39Ar)K = 0.0085 ± 0.0000425; based on analyses of Ca and K salts. Ages 

were calculated using the atmospheric 40Ar/36Ar ratio of 298.56 (Lee et al., 2006) and decay 
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constants of Renne et al. (2010). All data corrections were carried out using bespoke data-reduction 

software and ages were calculated using Isoplot 4.15 (Ludwig, 2009).  

Plateau ages derived from step-heating are defined as a statistically consistent sequence - a plateau 

of at least three successive incremental steps, incorporating > 60 % 39Ar to give an age concordant at 

2σ (or 95 %) confidence level. 40Ar/39Ar results are summarised in Tables 2 and 3, all errors on final 

ages are quoted at 2σ or 95% confidence and include a 0.5% error on the J value (full data in 

supplementary material). Graphical data for each sample is presented as either a cumulative age 

spectra or weighted average plot depending upon whether the analysis was step-heated or spot 

sampled (Fig. 4). Inverse isochron correlation diagrams, where 36Ar/40Ar is plotted against 39Ar/40Ar, 

are also calculated (Fig 5). 

Initially two samples (LB1-955-960 & LB1-970-975) with a relatively unaltered microcrystalline 

groundmass were step-heated as whole-rock and the other 3 samples were analysed by the in situ 

spot sampling method using the MAP. Following initial analysis, a secondary set of all 5 samples 

were step-heated and measured using the more sensitive Nu Noblesse in single collector mode. Data 

was collected from 3 of 5 secondary samples but none achieved strict plateau criteria of three or 

more concurrent steps, within error, contributing > 60 % 39Ar. The level of precision of this 

instrument meant that the error on each step was reduced, decreasing the concordance between 

them, and thus, no statistical plateaux were achieved, even though the secondary data appears to 

corroborate with the primary data. However, isochrons produced by this secondary data revealed 

significant statistics to reaffirm the original data. The two failed samples (BTDF-001(2) and NLBT-

006(2)) yielded very high quantities of gas, enough to overwhelm the highly sensitive Noblesse 

making analysis difficult. These were re-analysed by step heating using the MAP 215-50 system, 

resulting in a total of 10 40Ar/39Ar analyses. 
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Results 

LB1-970-975 

Both analyses from this sample yield ages within error of one another. The plateau from analysis (1) 

used 70% of available 39Ar, producing an age of 508.0 ± 8.1 Ma (2σ; MSWD: 0.4; p = 0.88). The 

isochron data produces a slightly older age at 512.9 ± 7.1 Ma (MSWD: 1.8; p = 0.07) with an initial 

40Ar/36Ar estimate (336 ± 19) which is slightly elevated above atmospheric ratio of 298.56, yet is well 

within error of the plateau age. This enlarged error and low probability may be due to the clumping 

of data near to 0 on the y-axis. The secondary analysis did not produce a statistical plateau due to 

the increased precision of the Nu Noblesse, however the apparent spread of data on the inverse 

isochron allows for an accurate initial 40Ar/36Ar estimate (295 ± 15), thus the age produced (497.9 ± 

7.5 Ma; MSWD: 25; p = 0.00) can accepted - this is within error of the primary analysis. A weighted 

average of these two analyses is 502.6 ± 5.5 Ma (2σ; MSWD: 3.3; p = 0.07). 

 

LB1-955-960 

Both analyses from this sample agree. The plateau age of 499.8 ± 7.0 Ma (2σ; MSWD: 1.6; p = 0.15) 

using 95.3 % of 39Ar from analysis (1) is in agreement with the inverse isochron age of 498.6 ± 7.0 Ma 

(MSWD: 1.4; p = 0.20) with a good spread of data, despite some clumping of error ellipses, 

producing an initial 40Ar/36Ar estimate of 325 ± 25. The secondary analysis again doesn’t reach 

plateau due to smaller error on individual steps. The spread of data along the isochron again 

produces an accurate initial 40Ar/36Ar estimate (298 ± 16) and thus an accepted age (496.9 ± 6.6 Ma; 

MSWD: 20; p = 0.00) within error of the primary analysis. A weighted average of these two analyses 

is 498.3 ± 4.8 Ma (2σ; MSWD: 0.36; p = 0.55). 
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BTDF-001 

BTDF-001(1) spot samples produce a weighted average of 511.3 ± 5.7 Ma (2σ with 0/16 rejections; 

MSWD: 1.5; p = 0.09) with an inverse isochron in agreement within error (508.9 ± 8.2 Ma; MSWD: 

1.6; p = 0.07), with a good spread of data producing an accurate initial 40Ar/36Ar estimate of 302 ± 10. 

BTDF-001(2) is a step-heated analysis producing a plateau at 505.3 ± 6.6 Ma (2σ; MSWD: 1.7; p = 

0.08) with 95.2% of 39Ar used. The inverse isochron for this analysis suffers from extensive clumping 

of data at 0 on the y-axis, thus with little spread in the data this initial 40Ar/36Ar ratio of 403 ± 51 is 

unreliable. However, as this secondary sample is well within error of the primary sample both can be 

classed as internally repeatable and thus accepted. A weighted average of these two analyses is 

508.7 ± 4.3 Ma (2σ; MSWD: 1.9; p = 0.17). 

 

VCAQ-001 

Spot samples on VCAQ-001(1) produce a weighted average of 517.6 ± 7.6 Ma (2σ with 2/16 points 

rejected; MSWD: 0.99; p = 0.46). The inverse isochron of this data produces an age of 520.4 ± 56 Ma 

(MSWD: 4.4; p = 0.00) with an initial 40Ar/36Ar estimate of 317 ± 74. These large errors are attributed 

to the large inherent error ellipses in the isochron. The secondary analysis, conducted on the Nu 

Noblesse did not produce a plateau, but an isochron age of 490.2 ± 7.7 Ma (MSWD: 4.5; p = 0.00) 

and an initial 40Ar/36Ar ratio of 326 ± 15 results from a small spread in the data, the majority are 

clumped together. The large error in the primary analysis and the lack of internal precision discounts 

both analyses from this sample. 

 

NLBT-006 
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NLBT-006(1) spot samples produce a weighted average age of 411.0 ± 22 Ma (95% with 0/18 

rejections; MSWD: 9.5; p = 0.00). The inverse isochron produces an age of 441.0 ± 55.0 Ma (MSWD: 

9.8; p = 0.00) with an initial 40Ar/36Ar estimate of 280 ± 19. The large errors on these data are caused 

by the lack of samples at the base of the 40Ar/36Ar extrapolation. The secondary step-heated sample, 

NLBT-006(2), yielded an age of 470.5 ± 8.5 Ma (2σ; MSWD: 1.11; p = 0.35) from 100% of 39Ar and an 

isochron age of 469.0 ± 9.1 Ma (MSWD: 1.2; p = 0.26) with an initial 40Ar/36Ar estimate of 304 ± 26. 

Whilst this secondary sample appears to be statistically sound, large error ellipses in the isochron 

mean that the extrapolation could be skewed away from its current position and still be ‘accurate’. 

The initial steps of the analysis are included even though their error are large, thus reducing the 

accuracy of the overall plateau. Although this age is possibly a reasonable estimate for the age of 

this sample it if of low precision; these issues, paired with the lack of internal precision between 

analyses (1) and (2) discount this sample. 

 

Discussion 

Age of the Antrim Plateau Volcanics 

The three positive results (498.3 ± 4.8 Ma, 502.6 ± 5.5 Ma and 508.7 ± 4.3 Ma) from this study add to 

the single age garnered from LB011 (509.9 ± 2.2 Ma; Glass and Phillips, 2006) to quadruple the 

meaningful ages from the Antrim Plateau Volcanics (Table 4), and extend the data for Kalkarindji as a 

whole to 14 data points (Fig. 6). This is still a very small dataset when compared with more well-

known CFB provinces such as the Deccan (Pande et al., 2017; Subbarao and Courtillot, 2017), which 

shows the work still to be done to improve upon the accuracy of the age of Kalkarindji to better 

understand the nuances and complexities of the geodynamics of this CFBP. The dates of this study 

do give us a slight peek into the possible evolution and impact of this eruption.  
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Geographically, the samples from this study are located in the south-west (LB1) and south east 

(BTDF) of the APV, giving an agreement across the two ‘limbs’ of the province, indicating an eruption 

duration across the whole province which is shorter than statistical error can account for.  

The two samples from the base of the borehole yield ages of ~5 Myrs younger than the two samples 

obtained at the ground level (LB011 & BTDF-001), although these are within error. This could 

perhaps indicate a very rapid eruption, shorter than the inherent error associated with Ar dating, or 

the more likely scenario that the surface samples have undergone a small degree of previously 

unidentified alteration, introducing excess argon into the system. 

 

Effects of alteration 

The age of a sample determined by 40Ar/39Ar analysis can appear erroneous to an  expected date (as 

constrained by independent relative and absolute dating methods) owing to several factors which 

may have affected closure of the Ar system post emplacement. The system is most notably affected 

by the influence of diagenetic fluids passing through the rock, leaching elements from minerals and 

re-depositing them as secondary clay minerals. Potassium bearing fluids have the potential to 

elevate K in a sample, increasing the 39Ar content (daughter product of 39K during irradiation) and 

lowering the 40Ar/39Ar ratio; thus the sample will yield apparently younger ages. If fluids are depleted 

in K, leaching will occur, reducing the 39K content, resulting in an artificially elevated 40Ar/39Ar ratio 

and an apparently older age. These scenarios assume the 40Ar content remains constant and is 

unaffected by alteration. In reality, the introduction of fluids will most likely release Ar contained 

within minerals, reducing the 40Ar content and yielding younger apparent ages. However, when the 

fluids are Ar-bearing, excess argon (40ArE) is introduced by diffusion into the mineral or melt 

inclusions (Kelley, 2002). The presence of 40ArE is monitored by the 40Ar/36Ar ratio in comparison with 

the known atmospheric ratio of 298.56 (Lee et al., 2006). 39Ar recoil may also be a problem to 
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encounter with spot sampling as this affects individual crystals. It is likely to be seen in the altered 

matrix groundmass and early low-temperature phases of step-heating. However, although recoil is 

likely in all potassium bearing samples, redistribution of 39K by diagenetic fluids is likely to be the 

overwhelming factor behind erroneous ages. 

The two samples that were discounted have not produced meaningful ages due to a variety of 

reasons. VCAQ-001(1), produced a weighted average age at 517.6 ± 7.6 Ma, but incurred very large 

errors on the isochron, attributed to the spread of ellipses along the regression line. There is no 

cluster at 0 on the y-axis, instead seen around 0.0005 as a loose cluster of relatively large ellipses, 

indicating a loss in radiogenic Ar from this sample. Whilst no plateau was forthcoming from VCAQ-

001(2) the isochron should record an older age, with a relatively high MSWD of 4.5 and initial 

40Ar/36Ar intercept at 326 ± 15, but is instead younger, indicating a loss in radiogenic argon and an 

influence of alteration through the sample.  

NLBT-006(1) yielded a young age of 411.0 ± 22.0 Ma from spot sampling with large error on this and 

the isochron age (441.0 ± 55 Ma). These errors are attributed to the diagenesis which is likely to 

have occurred. The 37Ar/39Ar ratio can be used as a proxy for the Ca/K ratio of a sample to monitor 

alkali movement. In NLBT-006 this ratio is reduced compared to whole-rock data (< 5.1). This is 

explained by the preferential weathering to have affected plagioclase in these samples, whereby Ca 

is lost through saussuritization in plagioclase (Marshall, 2015), thus relatively increasing the 39K 

present, and inducing an artificially young age. The isochon on NLBT-006(2) relies on large data-point 

ellipses with large error, indicating the isochron to be intrinsically flawed; the line of best fit could be 

moved significantly and still fit the ellipses, thus changing the date and initial 40Ar/36Ar value without 

changing the data. 

Dates produced in this study indicate that both spot sampling and step-heating can produce both 

statistically reliable and ‘apparent’ ages. Due to the stepped nature of step-heating, this method is 

able to identify the presence of ArE and 39Ar recoil and how they vary through the experiment. These 
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are usually released in the early low temperature steps, as seen in LB1-970-975(1) and LB1-955-

960(1). However, where alteration is more pervasive the error on each step may be large enough to 

skew the plateau as seen in NLBT-006(2). With spot sampling, a good age depends upon the 

precision of the analysis, indicated by the repeatability of the ages yielded (Fig. 4). High precision on 

fresh samples yields good dates (BTDF-001(1)), whereas, if precision is low this can yield erroneous 

ages (VCAQ-001(1) & NLBT-006(1)), thus a weighted average becomes skewed. To improve upon 

this, a time consuming picking procedure can be undertaken to pick the cleanest and freshest 

plagioclase crystals. However, as seen with many Kalkarindji samples, alteration is affecting crystals 

from their inside and may not be visible in a picking procedure. To avoid this particular problem, an 

acid leach could have been applied to crystals, removing sericite and other alteration products from 

the original material. However, it was determined that an acid leach on altered samples such as 

these from the Kalkarindji, had the potential to dissolve the available material to practically zero, 

hence no leach was applied during this study. 

 

Multiple stages of magmatism 

The most reliable dates offered by previous authors represent intrusive bodies from the Canning 

Basin (511 ± 5 Ma), Officer Basin (511 ± 4 Ma) and Milliwindi Dyke (510.7 ± 0.6 Ma - Jourdan et al., 

2014); and small volcanic outliers in the Table Hill Volcanics (509.6 ± 2.5 Ma - Evins et al., 2009) and 

Helen Springs Volcanics (512.1 ± 1.8 Ma - Glass and Phillips, 2006). Importantly, there has been only 

a single successful date from the Antrim Plateau Volcanics (509.9 ± 2.2 Ma - Glass and Phillips, 2006). 

Compared to these previous dating attempts of the province which, when corrected to the same 

decay constant, range from 512.8 - 509.6 ± 2.5 Ma, the new dates of this study are significantly 

younger at 508 - 498 ± 5 Ma. This discrepancy between the different ages and their geographical 

placement leads to a new hypothesis for the magmatic evolution of the Kalkarindji province. The 

oldest dates indicate the early onset of intrusive magmatism into the Western Australian cratons 
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between 512 - 510 Ma. Smaller satellite provinces are found to erupt first between 512 - 509 Ma 

before the main volcanic expression of the Antrim Plateau erupted between 508 - 498 Ma. 

This leads to new interpretations regarding the EMC biotic crisis at 510 Ma and the impact that 

Kalkarindji had on the Cambrian environment. With the biotic turnover dated to 510 ± 1 Ma, it 

follows that for the CFBP to have been a significant factor in the environmental decay which led to 

this extinction, the initial input of volatiles must have been synchronous with the established 

extinction marker layer (Wignall, 2011). As the early Cambrian biota, having never been witness to 

significant environmental change before, may not have been resilient enough to survive the slightest 

changes, it is conceivable that the intrusives in Western Australia may be linked to the EMC in a 

similar fashion to the Siberian Traps (Burgess et al., 2017), although confirmation of this requires 

further investigation into the volatile content of the specific units intruded. However, the Antrim 

Plateau Volcanics are too young to be a factor with this biotic crisis (Fig. 6), with previous studies of 

emissions from Kalkarindji suggesting that these eruptions were unlikely to have caused any 

significant impact on the atmospheric compositions at that time (Marshall et al., 2016). This is not to 

say that Kalkarindji did not cause any environmental change, previous C-isotope excursion studies in 

the mid-late Cambrian show significant changes were occurring in this period (Fan et al., 2011). 

Significant swings between positive and negative excursions in the Cambrian carbon curve (Fig. 6) 

show that the global carbon cycle was rapidly adapting with the advent of new biota and 

ecosystems, and that it would have been particularly susceptible to a range of forcing factors 

(Faggetter et al., 2017). For instance, the sudden release of large amounts of CH4 or CO2 to the 

atmosphere, has the potential to affect the positive and negative feedbacks between all of the 

Earth’s major domains (the atmosphere, biosphere, lithosphere, and hydrosphere). Indeed, notable 

and well-documented δ13C excursions later in the Phanerozoic may be effected by factors including 

eustatic and climate change, clathrate release, bolide impact and LIP volcanism (Doney and Schimel, 

2007; Zachos et al., 2008). Acidification of seawater and increased rates of continental weathering 
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are two consequences of global warming  forced by substantial and abrupt increases in the level of 

atmospheric CO2; such releases can be achieved through large-scale volcanism and the subsequent 

environmental changes continued for many tens or hundreds of thousands of years after their start 

(Wignall et al., 2009; Dickson et al., 2012). However, Marshall et al. (2016) discussed the 

effectiveness of an equatorial CFBP eruption during the Cambrian, indicating that whilst this location 

is favourable for aerosol distribution into both hemispheres, the eruption column needs to 

penetrate the high tropopause to have worldwide influence. Whether the Kalkarindji lavas were 

sufficiently extensive and potent enough to have contributed to a major environmental catastrophe 

requires further investigation. 

 

Conclusions 

The age of Kalkarindji and its geological history post-emplacement has resulted in a greater degree 

of alteration of samples than initially expected. Of the 5 samples selected for analysis, two have 

provided unreliable data yielding apparent ages due to reasons associated with this pervasive 

alteration. Three samples, 1 from surface locations and 2 from the base of the BMR Limbunya 1 

borehole have yielded reliable, statistically confident ages which agree, within error, with each other 

and previously published data, although the APV samples are clearly younger than the intrusives and 

satellite provinces of Kalkarindji. 

The coincidence of age between BTDF-001 and LB011 and the divergence between these and the 

samples from LB1 could indicate that surface samples have undergone a slight gain in argon in 

comparison to those from lower in the stratigraphy. The discrepancy with ages yielded by some 

previous studies may be explained by the fact that these have dated different expressions of the 

broader ‘magmatic event’; all may have the same geochemistry, but most are intrusive dykes or else 

satellite provinces to the main APV. We therefore suggest that the APV was erupted after these 
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dykes and outer provinces were emplaced. Consequently, if these new dates are correct and the 

timing of the APV is discordant from other dated outcrops of Kalkarindji, the largest expression of 

basalt in the province was most likely to have erupted after the 510 Ma biotic crisis. Nevertheless, if 

the main Kalkarindji extrusive phase can be thus discounted as being a major cause of this particular 

environmental change, it would not discount it from having triggered environmental change later in 

the Cambrian. 
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Figure Captions 

Fig. 1 Outcrop map of the Antrim Plateau Volcanics in Western Australia and Northern Territory, and 

inset across Australia. Sample locations from this study are shown as red circles. Previous 

geochronological sample locations are shown as yellow stars. Previous studies indicated by their age 

and publication year are: Bultitude (1972), Hanley and Wingate (2000), Macdonald et al. (2005), 

Glass and Phillips (2006), Evins et al. (2009) and Jourdan et al. (2014). 

Fig. 2 Comparative histogram of all published isotope age data concerning the Kalkarindji CFBP. 

Uncertainties are quoted at 2σ. All Ar-Ar ages are recalibrated to the decay constants of Min et al. 

(2000) and referenced against GA-1550 with an age of 99.77 Ma as detailed in Renne et al. (2010). a) 

Bultitude (1972), b) Hanley and Wingate (2000), c) Macdonald et al. (2005), d) Glass and Phillips 

(2006), e) Evins et al. (2009), f) Jourdan et al. (2014). 

Fig. 3 Chemical Index of Alteration (CIA), Mafic Index of Alteration in oxidising conditions (MIAO) and 

Mafic Index of Alteration in reducing conditions (MIAR) plotted against sample elevation. The five 

samples of this study (closed symbols), plot < 50 on each index, indicating unweathered samples. 

Kalkarindji samples (open symbols) collated from previous studies (Glass, 2002; Clark, 2014; Gray, 

2014; Marshall, 2015). 

Fig. 4 40Ar/39Ar age spectra and weighted averages of ten analyses from five samples of the Antrim 

Plateau Volcanics. Steps included in plateau age segments are shown in dark grey. Analyses rejected 

from weighted average are shown as red error bars and plagioclase (orange diamonds) and matrix 

spots (purple circles) are highlighted. The calculated age is shown in green. 

Fig. 5 36Ar/40Ar – 39Ar/40Ar Inverse isochrones of ten analyses from five samples of the Antrim Plateau 

Volcanics. 
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Table Captions 

Table 1 Recalibration of published 40Ar/39Ar data to the standardised Min et al. (2000) decay 

constant and standard values calculated by Renne et al. (2010) as used in this study. Glass and 

Phillips (2006) and Evins et al. (2009) originally calibrated to Steiger & Jäger (1977) and Renne et al. 

(1998); Jourdan et al. (2014) originally calibrated to Renne et al. (2011) and Jourdan and Renne 

(2007). 

Table 2 40Ar/39Ar dating results for samples from the Antrim Plateau Volcanics.  

Table 3 Isochron data summary. ACCEPTED M
ANUSCRIP

T

Fig. 6  A comparison between the previously published data, the accepted Early-Middle Cambrian 

extinction (EMC), a composite δ13C curve (Zhu et al., 2006; Ishikawa et al., 2014) and the results of this 

study, with analyses from the APV labelled by sample name. a) Bultitude (1972), b) Hanley and Wingate 

(2000), c) Macdonald et al. (2005), d) Glass and Phillips (2006), e) Evins et al. (2009), f) Jourdan et al. 

(2014), g) this study, h) minimum age of the EMC boundary (Harvey et al., 2011), i) maximum age of the 

EMC boundary (Landing et al., 1998). Stratigraphic ages provided by Gradstein et al. (2012). 
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Table 4 Four weighted average ages of samples from the Antrim Plateau Volcanics; three samples 

from this study and LB011 analysed by Glass and Philips (2006). 
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Table 1 

Author 
Glass & Phillips 

(2006) 

Evins et al. 

(2009) 

Jourdan et al. 

(2014) 

Sample HS002(1) HS002(2) LB011 EMP 1255 07THD-002 

Standard GA-1550 FCs 

Decay Constant 

(λ) 
5.543 x 10

-10 
a

-1 
5.5545 x10

-10 
a

-1 

Standard Age 

(Ma) 
98.790 ± 0.540 28.294 ± 0.036 

Sample Age 

(Ma) 
507.5 ± 1.6 506.0 ± 2.0 504.7 ± 2.2 504.6 ± 2.5 510.0 ± 4.0 

 Recalibrated to Min et al. (2000) and Renne et al. (2010) 

Decay Constant 

(λ) 
5.463 x 10

-10 
a

-1
 

Standard Age 

(Ma) 
99.769 ± 0.108 28.305 ± 0.036 

Sample Age 

(Ma) 
512.8 ± 1.6 [2σ] 511.3 ± 2.0 [2σ] 509.9 ± 2.2 [2σ] 509.6 ± 2.5 [2σ] 511.0 ± 4.0 [2σ] 

GA-1550 = Mount Dromedary biotite (McDougall and Wellman, 2011) 
FCs = Fish Canyon sanidine (Renne et al., 1998) 

 

 

 

Table 2 

Sample Location 
Elevation 
(m AOD) 

Age (Ma) 
% 

39
Ar 

included 
MSWD 

Analysis 
(Instrument) 

LB1-970-
975(1) 17°25’00.0”S 

129°22’37.7”E 
1 

508.0 ± 8.1 [2σ] 70 0.4 SH (MAP) 

LB1-970-
975(2) 

no plateau SH (Nu) 

LB1-955-
960(1) 17°25’00.0”S 

129°22’37.7”E 
6 

499.8 ± 7.0 [2σ] 95.3 1.5 SH (MAP) 

LB1-955-
960(2) 

no plateau SH (Nu) 

BTDF-001(1) 
17°00’26.4”S 

131°20’44.5”E 
134 

511.3 ± 5.7 [2σ] - 1.5 Sp (MAP) 

BTDF-001(2) 505.3 ± 6.6 [2σ] 95.2 1.7 SH (MAP) 

VCAQ-001(1) 
15°23’43.7”S 

131°31’27.0”E 
198 

517.6 ± 7.6 [2σ] - 0.99 Sp (MAP) 

VCAQ-001(2) no plateau SH (Nu) 

NLBT-006(1) 
17°31’22.3”S 

129°13’40.4”E 
351 

411.0 ± 22.0 [95%] - 9.5 Sp (MAP) 

NLBT-006(2) 470.5 ± 8.2 [2σ] 100 1.11 SH (MAP) 
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MSWD = mean squared weighted deviates. 
SH = step-heating, Sp = spot sampling. 
MAP = Mass Analyser Products 215-50 noble gas spectrometer, Nu = Nu Instruments Noblesse noble gas spectrometer. 
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Table 3 

Sample 
Plateau/Weighted 

Average Age (Ma) 
MSWD Probability 

Isochron 

Age 

(Ma) 

MSWD Probability 
Initial 

40
Ar/

36
Ar 

LB1-970-975(1) 508.0 ± 8.1 [2σ] 0.4 0.880 512.9 ± 7.1 1.8 0.070 336 ± 19 

LB1-970-

975(2)* 
- - - 497.9 ± 7.5 25 0.000 295 ± 15 

LB1-955-960(1) 499.8 ± 7.0 [2σ] 1.6 0.150 498.6 ± 7.0 1.4 0.200 325 ± 25 

LB1-955-

960(2)* 
- - - 496.9 ± 6.6 20 0.000 298 ± 16 

BTDF-001(1) 511.3 ± 5.7 [2σ] 1.5 0.092 508.9 ± 8.2 1.6 0.065 302 ± 10 

BTDF-001(2) 505.3 ± 6.6 [2σ] 1.7 0.076 504.4 ± 6.6 1.5 0.110 403 ± 51 

VCAQ-001(1) 517.6 ± 7.6 [2σ] 0.99 0.460 
520.4 ± 

56.0 
4.4 0.000 317 ± 74 

VCAQ-001(2)* - - - 490.2 ± 7.7 4.5 0.000 326 ± 15 

NLBT-006(1) 411.0 ± 22.0 [95%] 9.5 0.000 
441.0 ± 

55.0 
9.8 0.000 280 ± 19 

NLBT-006(2) 470.5 ± 8.2 [2σ] 1.11 0.350 469.0 ± 9.1 1.2 0.260 304 ± 26 

MSWD = mean squared weighted deviates. 
*Analysis collected by Nu Instruments Noblesse noble gas spectrometer 

 

 

 

 

Table 4 

Sample Age (Ma) MSWD Probability 

LB011
a
 509.9 ± 2.2 [2σ] 0.89 0.09 

LB1-970-975 502.6 ± 5.5 [2σ] 3.3 0.07 

LB1-955-960 498.3 ± 4.8 [2σ] 0.36 0.55 

BTDF-001 508.7 ± 4.3 [2σ] 1.9 0.17 

MSWD = mean squared weighted deviates. 
a
Glass and Phillips (2006) 
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Chronological order consistent with Figure 2 and Table 1.
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