329 research outputs found
Water in massive star-forming regions: HIFI observations of W3 IRS5
We present Herschel observations of the water molecule in the massive
star-forming region W3 IRS5. The o-H17O 110-101, p-H18O 111-000, p-H2O 22
202-111, p-H2O 111-000, o-H2O 221-212, and o-H2O 212-101 lines, covering a
frequency range from 552 up to 1669 GHz, have been detected at high spectral
resolution with HIFI. The water lines in W3 IRS5 show well-defined
high-velocity wings that indicate a clear contribution by outflows. Moreover,
the systematically blue-shifted absorption in the H2O lines suggests expansion,
presumably driven by the outflow. No infall signatures are detected. The p-H2O
111-000 and o-H2O 212-101 lines show absorption from the cold material (T ~ 10
K) in which the high-mass protostellar envelope is embedded. One-dimensional
radiative transfer models are used to estimate water abundances and to further
study the kinematics of the region. We show that the emission in the rare
isotopologues comes directly from the inner parts of the envelope (T > 100 K)
where water ices in the dust mantles evaporate and the gas-phase abundance
increases. The resulting jump in the water abundance (with a constant inner
abundance of 10^{-4}) is needed to reproduce the o-H17O 110-101 and p-H18O
111-000 spectra in our models. We estimate water abundances of 10^{-8} to
10^{-9} in the outer parts of the envelope (T < 100 K). The possibility of two
protostellar objects contributing to the emission is discussed.Comment: Accepted for publication in the A&A HIFI special issu
ESA's wind Lidar mission ADM-AEOLUS; on-going scientific activities related to calibration, retrieval and instrument operation
The Earth Explorer Atmospheric Dynamics Mission
(ADM-Aeolus) of ESA will be the first-ever satellite to
provide global observations of wind profiles from
space. Its single payload, namely the Atmospheric
Laser Doppler Instrument (ALADIN) is a directdetection
high spectral resolution Doppler Wind Lidar
(DWL), operating at 355 nm, with a fringe-imaging
receiver (analysing aerosol and cloud backscatter) and a
double-edge receiver (analysing molecular backscatter).
In order to meet the stringent mission requirements on
wind retrieval, ESA is conducting various science
support activities for the consolidation of the on-ground
data processing, calibration and sampling strategies.
Results from a recent laboratory experiment to study
Rayleigh-Brillouin scattering and improve the
characterisation of the molecular lidar backscatter
signal detected by the ALADIN double-edge Fabry-
Perot receiver will be presented in this paper. The
experiment produced the most accurate ever-measured
Rayleigh-Brillouin scattering profiles for a range of
temperature, pressure and gases, representative of
Earth’s atmosphere. The measurements were used to
validate the Tenti S6 model, which is implemented in
the ADM-Aeolus ground processor.
First results from the on-going Vertical Aeolus
Measurement Positioning (VAMP) study will be also
reported. This second study aims at the optimisation of
the ADM-Aeolus vertical sampling in order to
maximise the information content of the retrieved
winds, taking into account the atmospheric dynamical
and optical heterogeneity. The impact of the Aeolus
wind profiles on Numerical Weather Prediction (NWP)
and stratospheric circulation modelling for the different
vertical sampling strategies is also being estimated
Water abundances in high-mass protostellar envelopes: Herschel observations with HIFI
We derive the dense core structure and the water abundance in four massive
star-forming regions which may help understand the earliest stages of massive
star formation. We present Herschel-HIFI observations of the para-H2O 1_11-0_00
and 2_02-1_11 and the para-H2-18O 1_11-0_00 transitions. The envelope
contribution to the line profiles is separated from contributions by outflows
and foreground clouds. The envelope contribution is modelled using Monte-Carlo
radiative transfer codes for dust and molecular lines (MC3D and RATRAN), with
the water abundance and the turbulent velocity width as free parameters. While
the outflows are mostly seen in emission in high-J lines, envelopes are seen in
absorption in ground-state lines, which are almost saturated. The derived water
abundances range from 5E-10 to 4E-8 in the outer envelopes. We detect cold
clouds surrounding the protostar envelope, thanks to the very high quality of
the Herschel-HIFI data and the unique ability of water to probe them. Several
foreground clouds are also detected along the line of sight. The low H2O
abundances in massive dense cores are in accordance with the expectation that
high densities and low temperatures lead to freeze-out of water on dust grains.
The spread in abundance values is not clearly linked to physical properties of
the sources.Comment: 8 pages, 5 figures, accepted for publication the 15/07/2010 by
Astronomy&Astrophysics as a letter in the Herschel-HIFI special issu
Sensitive limits on the abundance of cold water vapor in the DM Tau protoplanetary disk
We performed a sensitive search for the ground-state emission lines of ortho-
and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI
instrument. No strong lines are detected down to 3sigma levels in 0.5 km/s
channels of 4.2 mK for the 1_{10}--1_{01} line and 12.6 mK for the
1_{11}--0_{00} line. We report a very tentative detection, however, of the
1_{10}--1_{01} line in the Wide Band Spectrometer, with a strength of
T_{mb}=2.7 mK, a width of 5.6 km/s and an integrated intensity of 16.0 mK km/s.
The latter constitutes a 6sigma detection. Regardless of the reality of this
tentative detection, model calculations indicate that our sensitive limits on
the line strengths preclude efficient desorption of water in the UV illuminated
regions of the disk. We hypothesize that more than 95-99% of the water ice is
locked up in coagulated grains that have settled to the midplane.Comment: 5 pages, 3 figures. Accepted for publication in the Herschel HIFI
special issue of A&
Hydrides in Young Stellar Objects: Radiation tracers in a protostar-disk-outflow system
Context: Hydrides of the most abundant heavier elements are fundamental
molecules in cosmic chemistry. Some of them trace gas irradiated by UV or
X-rays. Aims: We explore the abundances of major hydrides in W3 IRS5, a
prototypical region of high-mass star formation. Methods: W3 IRS5 was observed
by HIFI on the Herschel Space Observatory with deep integration (about 2500 s)
in 8 spectral regions. Results: The target lines including CH, NH, H3O+, and
the new molecules SH+, H2O+, and OH+ are detected. The H2O+ and OH+ J=1-0 lines
are found mostly in absorption, but also appear to exhibit weak emission
(P-Cyg-like). Emission requires high density, thus originates most likely near
the protostar. This is corroborated by the absence of line shifts relative to
the young stellar object (YSO). In addition, H2O+ and OH+ also contain strong
absorption components at a velocity shifted relative to W3 IRS5, which are
attributed to foreground clouds. Conclusions: The molecular column densities
derived from observations correlate well with the predictions of a model that
assumes the main emission region is in outflow walls, heated and irradiated by
protostellar UV radiation.Comment: Astronomy and Astrophysics Letters, in pres
Recommended from our members
Fort Lewis electric energy baseline and efficiency resource assessment
The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through Pacific Northwest Laboratory, FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations. In this report, we describe PNL's assessment of the electric energy efficiency resource potential at Fort Lewis (near Tacoma, WA). Through this assessment, we developed an estimate of the electricity use baseline and efficiency improvement potential for major sectors and end uses at the Fort. Developing the baseline was essential to segment the end uses that are targets for broad-based efficiency improvement programs and to provide TPU with the basis for its proposal to Bonneville. An estimate of the efficiency resource is presented to reflect the available quantity of resource for three electricity price ranges. The baseline and efficiency resource estimates did not identify all possible areas of opportunity, but instead identified the majority of the resource; areas of additional opportunity are noted, to encourage further effort. 2 figs., 2 tabs
Recommended from our members
Fort Lewis electric energy baseline and efficiency resource assessment
In support of the US DOE Federal Energy Management Program, the Pacific Northwest Laboratory is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations. Fort Lewis, a US Army installation near Tacoma, Washington, was selected as the pilot site for developing this approach. This site was chosen in conjunction with the interests of the Bonneville Power Administration to develop programs for its federal sector customers and the Army Forces Command to develop an in-house program to upgrade the energy efficiency of its installations. This report documents the electricity assessment portion of the approach, providing an estimate of the electricity use baseline and efficiency improvement potential for major sectors and end uses at the Fort. Although the assessment did not identify all possible efficiency improvement opportunities, it is estimated that electricity use can be reduced by at least 20% cost-effectively at the $0.045/kWh marginal cost of electricity in the Pacific Northwest. 12 refs., 3 figs., 7 tabs
Water in low-mass star-forming regions with Herschel: HIFI spectroscopy of NGC1333
'Water In Star-forming regions with Herschel' (WISH) is a key programme
dedicated to studying the role of water and related species during the
star-formation process and constraining the physical and chemical properties of
young stellar objects. The Heterodyne Instrument for the Far-Infrared (HIFI) on
the Herschel Space Observatory observed three deeply embedded protostars in the
low-mass star-forming region NGC1333 in several H2-16O, H2-18O, and CO
transitions. Line profiles are resolved for five H16O transitions in each
source, revealing them to be surprisingly complex. The line profiles are
decomposed into broad (>20 km/s), medium-broad (~5-10 km/s), and narrow (<5
km/s) components. The H2-18O emission is only detected in broad 1_10-1_01 lines
(>20 km/s), indicating that its physical origin is the same as for the broad
H2-16O component. In one of the sources, IRAS4A, an inverse P Cygni profile is
observed, a clear sign of infall in the envelope. From the line profiles alone,
it is clear that the bulk of emission arises from shocks, both on small (<1000
AU) and large scales along the outflow cavity walls (~10 000 AU). The H2O line
profiles are compared to CO line profiles to constrain the H2O abundance as a
function of velocity within these shocked regions. The H2O/CO abundance ratios
are measured to be in the range of ~0.1-1, corresponding to H2O abundances of
~10-5-10-4 with respect to H2. Approximately 5-10% of the gas is hot enough for
all oxygen to be driven into water in warm post-shock gas, mostly at high
velocities.Comment: Accepted for publication in the A&A HIFI special issu
Herschel-HIFI observations of high-J CO lines in the NGC 1333 low-mass star-forming region
Herschel-HIFI observations of high-J lines (up to J_u=10) of 12CO, 13CO and
C18O are presented toward three deeply embedded low-mass protostars, NGC 1333
IRAS 2A, IRAS 4A, and IRAS 4B, obtained as part of the Water In Star-forming
regions with Herschel (WISH) key program. The spectrally-resolved HIFI data are
complemented by ground-based observations of lower-J CO and isotopologue lines.
The 12CO 10-9 profiles are dominated by broad (FWHM 25-30 km s^-1) emission.
Radiative transfer models are used to constrain the temperature of this shocked
gas to 100-200 K. Several CO and 13CO line profiles also reveal a medium-broad
component (FWHM 5-10 km s^-1), seen prominently in H2O lines. Column densities
for both components are presented, providing a reference for determining
abundances of other molecules in the same gas. The narrow C18O 9-8 lines probe
the warmer part of the quiescent envelope. Their intensities require a jump in
the CO abundance at an evaporation temperature around 25 K, thus providing new
direct evidence for a CO ice evaporation zone around low-mass protostars.Comment: 8 pages, 9 figure
- …