13 research outputs found

    Panels of chemically-modified heparin polysaccharides and natural heparan sulfate saccharides exhibit differences in binding to Slit and Robo, as well as variation between protein binding and cellular activity.

    Get PDF
    Heparin/ heparan sulfate (HS) glycosaminoglycans are required for Slit-Robo cellular responses. Evidence exists for interactions between each combination of Slit, Robo and heparin/HS and for formation of a ternary complex. Heparin/HS are complex mixtures displaying extensive structural diversity. The relevance of this diversity has been studied to a limited extent using a few select chemically-modified heparins as models of HS diversity. Here we extend these studies by parallel screening of structurally diverse panels of eight chemically-modified heparin polysaccharides and numerous natural HS oligosaccharide chromatographic fractions for binding to both Drosophila Slit and Robo N-terminal domains and for activation of a chick retina axon response to the Slit fragment. Both the polysaccharides and oligosaccharide fractions displayed variability in binding and cellular activity that could not be attributed solely to increasing sulfation, extending evidence for the importance of structural diversity to natural HS as well as model modified heparins. They also displayed differences in their interactions with Slit compared to Robo, with Robo preferring compounds with higher sulfation. Furthermore, the patterns of cellular activity across compounds were different to those for binding to each protein, suggesting that biological outcomes are selectively determined in a subtle manner that does not simply reflect the sum of the separate interactions of heparin/HS with Slit and Robo

    RNA Contaminates Glycosaminoglycans Extracted from Cells and Tissues.

    No full text
    Glycosaminoglycans (GAGs) are linear negatively charged polysaccharides and important components of extracellular matrices and cell surface glycan layers such as the endothelial glycocalyx. The GAG family includes sulfated heparin, heparan sulfate (HS), dermatan sulfate (DS), chondroitin sulfate (CS), keratan sulfate, and non-sulfated hyaluronan. Because relative expression of GAGs is dependent on cell-type and niche, isolating GAGs from cell cultures and tissues may provide insight into cell- and tissue-specific GAG structure and functions. In our objective to obtain structural information about the GAGs expressed on a specialized mouse glomerular endothelial cell culture (mGEnC-1) we adapted a recently published GAG isolation protocol, based on cell lysis, proteinase K and DNase I digestion. Analysis of the GAGs contributing to the mGEnC-1 glycocalyx indicated a large HS and a minor CS content on barium acetate gel. However, isolated GAGs appeared resistant to enzymatic digestion by heparinases. We found that these GAG extracts were heavily contaminated with RNA, which co-migrated with HS in barium acetate gel electrophoresis and interfered with 1,9-dimethylmethylene blue (DMMB) assays, resulting in an overestimation of GAG yields. We hypothesized that RNA may be contaminating GAG extracts from other cell cultures and possibly tissue, and therefore investigated potential RNA contaminations in GAG extracts from two additional cell lines, human umbilical vein endothelial cells and retinal pigmental epithelial cells, and mouse kidney, liver, spleen and heart tissue. GAG extracts from all examined cell lines and tissues contained varying amounts of contaminating RNA, which interfered with GAG quantification using DMMB assays and characterization of GAGs by barium acetate gel electrophoresis. We therefore recommend routinely evaluating the RNA content of GAG extracts and propose a robust protocol for GAG isolation that includes an RNA digestion step

    \u3cem\u3eMoby Dick\u3c/em\u3e Pointed West

    No full text
    Third-generation dorymen, brothers Mark Lichtenthaler (at the helm) and Brett Lichtenthaler (pusher), launch the Moby Dick.https://digitalcommons.linfield.edu/dory_archphotos_all/1004/thumbnail.jp

    Neutrophil Extracellular Traps Drive Endothelial-to-Mesenchymal Transition

    No full text
    Objective— An excessive release and impaired degradation of neutrophil extracellular traps (NETs) leads to the continuous exposure of NETs to the endothelium in a variety of hematologic and autoimmune disorders, including lupus nephritis. This study aims to unravel the mechanisms through which NETs jeopardize vascular integrity. Approach and Results— Microvascular and macrovascular endothelial cells were exposed to NETs, and subsequent effects on endothelial integrity and function were determined in vitro and in vivo. We found that endothelial cells have a limited capacity to internalize NETs via the receptor for advanced glycation endproducts. An overflow of the phagocytic capacity of endothelial cells for NETs resulted in the persistent extracellular presence of NETs, which rapidly altered endothelial cell–cell contacts and induced vascular leakage and transendothelial albumin passage through elastase-mediated proteolysis of the intercellular junction protein VE-cadherin. Furthermore, NET-associated elastase promoted the nuclear translocation of junctional β-catenin and induced endothelial-to-mesenchymal transition in cultured endothelial cells. In vivo, NETs could be identified in kidney samples of diseased MRL/lpr mice and patients with lupus nephritis, in whom the glomerular presence of NETs correlated with the severity of proteinuria and with glomerular endothelial-to-mesenchymal transition. Conclusions— These results indicate that an excess of NETs exceeds the phagocytic capacity of endothelial cells for NETs and promotes vascular leakage and endothelial-to-mesenchymal transition through the degradation of VE-cadherin and the subsequent activation of β-catenin signaling. Our data designate NET-associated elastase as a potential therapeutic target in the prevention of endothelial alterations in diseases characterized by aberrant NET release. </jats:sec

    Characterization of mGEnC-1-derived GAGs reveals RNA as a major contaminant.

    No full text
    <p>The RNA content in extracts from conditionally immortalized mouse glomerular endothelial cells (mGEnC-1) was visualized by ethidium bromide agarose gel electrophoresis (A), and barium acetate gel electrophoresis (B) before and after RNase treatment. Enzymatic degradation of RNA in mGEnC-1 GAG extracts removes the RNA band observed on ethidium bromide gel, and a large spot that appears to co-migrate with HS on the barium acetate gel.</p

    RNA impurities interfere with the analysis of glycosaminoglycans (GAGs) using barium acetate agarose gel electrophoresis.

    No full text
    <p>Resolving untreated GAG extracts by barium acetate gel electrophoresis suggested relatively large amounts of heparan sulfate (HS) and dermatan sulfate (DS) and relatively little chondroitin sulfate (CS) in GAGs obtained from mouse glomerular endothelial cells (mGEnC-1), human umbilical vein endothelial cells (HUVEC) and immortalized retinal pigmental epithelial cells (ARPE-19) (A). GAG extracts from mouse tissues appeared to contain large amounts of DS (heart and liver) and CS (spleen), whereas kidney-derived GAGs were enriched in HS, but also contained DS and CS (B). However, the observed staining patterns seemed to result from contaminating RNA co-migrating between HS and DS, as RNase-I treatment revealed the actual GAG spots corresponding to primarily HS and CS.</p

    RNA contamination of glycosaminoglycan (GAG) extracts leads to a significant overestimation of GAG yields.

    No full text
    <p>The GAG content in extracts from conditionally immortalized mouse glomerular endothelial cells (mGEnC-1), human umbilical vein endothelial cells (HUVEC), immortalized retinal pigmental epithelial cells (ARPE-19) (A) and C57BL/6J mouse kidney, heart, liver and spleen (B) was quantified relative to heparan sulfate from bovine kidney using 1,9-dimethylmethylene blue. The apparent yield in untreated GAG samples from cell cultures was significantly overestimated 2- to 6-fold compared to RNase-treated samples, indicating that RNA contamination interferes with the charge-based DMMB quantification method. RNA also interfered with the quantification of GAGs obtained from heart, liver and spleen, but not in kidney cortex extracts. GAG concentrations are presented as μg/cm<sup>2</sup> confluent cell monolayer or μg/mg wet tissue. Results are given in means ± s.e.m. *P<0.05 by Anova.</p
    corecore