47 research outputs found

    Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation

    Get PDF
    The planar cell polarity (PCP) pathway is conserved throughout evolution, but it mediates distinct developmental processes. In Drosophila, members of the PCP pathway localize in a polarized fashion to specify the cellular polarity within the plane of the epithelium, perpendicular to the apicobasal axis of the cell. In Xenopus and zebrafish, several homologs of the components of the fly PCP pathway control convergent extension. We have shown previously that mammalian PCP homologs regulate both cell polarity and polarized extension in the cochlea in the mouse. Here we show, using mice with null mutations in two mammalian Dishevelled homologs, Dvl1 and Dvl2, that during neurulation a homologous mammalian PCP pathway regulates concomitant lengthening and narrowing of the neural plate, a morphogenetic process defined as convergent extension. Dvl2 genetically interacts with Loop-tail, a point mutation in the mammalian PCP gene Vangl2, during neurulation. By generating Dvl2 BAC (bacterial artificial chromosome) transgenes and introducing different domain deletions and a point mutation identical to the dsh1 allele in fly, we further demonstrated a high degree of conservation between Dvl function in mammalian convergent extension and the PCP pathway in fly. In the neuroepithelium of neurulating embryos, Dvl2 shows DEP domain-dependent membrane localization, a pre-requisite for its involvement in convergent extension. Intriguing, the Loop-tail mutation that disrupts both convergent extension in the neuroepithelium and PCP in the cochlea does not disrupt Dvl2 membrane distribution in the neuroepithelium, in contrast to its drastic effect on Dvl2 localization in the cochlea. These results are discussed in light of recent models on PCP and convergent extension

    Application of Two-Dimensional Matched Filters to X-Ray Radiographic Flaw Detection and Enhancement

    Get PDF
    Detection and enhancement of low contrast flaws in radiographic images with high noise fields is an ongoing topic of research in nondestructive evaluation. In film radiography, the minimum detectable flaw thickness is controlled by the exposure characteristics and the flaw size in relation to the thickness of the part. The exposure characteristics determine the overall sensitivity and noise level, while the flaw thickness controls the contrast of the flaw image with respect to the background film density. Often it is difficult to generate optimal exposures when inspecting thick objects or complicated part geometries. This can result in noisy images due to the poor counting statistics of the photons as well as optical film densities that are suboptimal for visual interpretation. In addition, flaw contrast is often extremely low due to the flaw size or the poor orientation of crack-like flaws. The goal of the work presented in this paper is to demonstrate the utility of digital image processing using the matched filter for detecting and enhancing flaws in low-contrast, high-noise radiographic images. The basic theory of the matched filter will be presented along with its application to two-dimensional images, In addition several practical examples will be shown on simulated and real radiographs.</p

    Instructional Strategies Used to Improve Students’ Comfort and Skill in Addressing the Occupational Therapy Process

    Get PDF
    The purpose of this study was to investigate the effectiveness of an intentional blending of instructional strategies in an occupational therapy (OT) entry-level master’s course. The OT Adult Practice course uses case-based instructional strategies, clinical skills labs, and standardized patient experiences in a dovetailed approach across three progressively complex clinical scenarios involving adult clients. The course is designed to support students in addressing the entire OT Process. Results of quantitative data analysis indicated that the sequential application of case-based instructional strategies, lab experiences, and standardized patient learning opportunities significantly improved students’ self-perception of their level of comfort and skill in being able to perform the following components of the OT process for adult clients: occupational profile, OT evaluation, developing an OT treatment plan, implementing OT treatment, and planning for discharge

    The (111) Surface of NaAu2: Structure, Composition, and Stability

    Get PDF
    The (111) surface of single-crystal NaAu2 is a model for catalytically active, powdered NaAu2. We prepare and characterize this surface with a broad suite of techniques. Preparation in ultrahigh vacuum consists of the traditional approach of ion bombardment (to remove impurities) and thermal annealing (to restore surface order). Both of these steps, however, cause loss of sodium (Na), and repeated treatments eventually trigger conversion of the surface and near-surface regions to crystalline gold. The bulk has a limited ability to repopulate the surface Na. Under conditions where Na depletion is minimized, electron diffraction patterns are consistent with the bulkterminated structure, and scanning tunneling microscopy reveals mesa-like features with lateral dimensions of a few tens of nanometers. The tops of the mesas do not possess fine structure characteristic of a periodic lattice, suggesting that the surface layer is disordered under the conditions of these experiments

    A new model for predicting relative nonwetting phase permeability from soil water retention curves

    Get PDF
    Relative permeability of the nonwetting phase in a multiphase flow in porous media is a function of phase saturation. Specific expressions of this function are commonly determined by combining soil water retention curves with relative nonwetting phase permeability models. Experimental evidence suggests that the relative permeability of the nonwetting phase can be significantly overestimated by the existing relative permeability models. A new model for the prediction of relative nonwetting phase permeability from soil water retention curves is proposed in this paper. A closed form expression can be obtained in combination with soil water retention curves. The model is mathematically simple and can easily and efficiently be implemented in numerical models of multiphase flow processes in porous media. The predicting capability of the proposed model is contrasted with well-supported models by comparing the measured and predicted relative air permeability data for 11 soils, representing a wide range of soil textures, from sand to silty clay loam. In most of the cases the proposed model improves the agreement between the predicted relative air permeability and the measured data. Copyright 2011 by the American Geophysical Union.published_or_final_versio

    Deficiency in origin licensing proteins impairs cilia formation: implications for the aetiology of meier-gorlin syndrome

    Get PDF
    Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency

    Pair-Wise Regulation of Convergence and Extension Cell Movements by Four Phosphatases via RhoA

    Get PDF
    Various signaling pathways regulate shaping of the main body axis during early vertebrate development. Here, we focused on the role of protein-tyrosine phosphatase signaling in convergence and extension cell movements. We identified Ptpn20 as a structural paralogue of PTP-BL and both phosphatases were required for normal gastrulation cell movements. Interestingly, knockdowns of PTP-BL and Ptpn20 evoked similar developmental defects as knockdown of RPTPα and PTPΔ. Co-knockdown of RPTPα and PTP-BL, but not Ptpn20, had synergistic effects and conversely, PTPΔ and Ptpn20, but not PTP-BL, cooperated, demonstrating the specificity of our approach. RPTPα and PTPΔ knockdowns were rescued by constitutively active RhoA, whereas PTP-BL and Ptpn20 knockdowns were rescued by dominant negative RhoA. Consistently, RPTPα and PTP-BL had opposite effects on RhoA activation, both in a PTP-dependent manner. Downstream of the PTPs, we identified NGEF and Arhgap29, regulating RhoA activation and inactivation, respectively, in convergence and extension cell movements. We propose a model in which two phosphatases activate RhoA and two phosphatases inhibit RhoA, resulting in proper cell polarization and normal convergence and extension cell movements

    Structure-based prediction of Wnt binding affinities for Frizzled-type cysteine-rich domain

    Get PDF
    Wnt signaling pathways are of significant interest in development and oncogenesis. The first step in these pathways typically involves the binding of a Wnt protein to the cysteine-rich domain (CRD) of a Frizzled receptor; Wnt-Frizzled interactions can be antagonized by secreted Frizzled-related proteins (sFRPs), which also contain a Frizzled-like CRD. The large number of Wnts, Frizzleds and sFRPs, as well as the hydrophobic nature of Wnt, pose challenges to laboratory-based investigations of interactions involving Wnt. Here, utilizing structural knowledge of a representative Wnt-Frizzled CRD interaction, as well as experimentally-determined binding affinities for a selection of Wnt-Frizzled CRD interactions, we generate homology models of Wnt-Frizzled CRD interactions and develop a quantitative structure-activity relationship for predicting their binding affinities. The derived model incorporates a small selection of terms derived from scoring functions used in protein-protein docking, as well as an energetic term considering the contribution made by the lipid of Wnt to the Wnt-Frizzled binding affinity. Validation with an external test set suggests that the model can accurately predict binding affinity for 75% of cases, and that the error associated with the predictions is comparable to the experimental error. The model was applied to predict the binding affinities of the full range of mouse and human Wnt-Frizzled and Wnt-sFRP interactions, indicating trends in Wnt binding affinity for Frizzled and sFRP CRDs. The comprehensive predictions made in this study provide the basis for laboratory-based studies of previously unexplored Wnt-Frizzled and Wnt-sFRP interactions, which in turn, may reveal further Wnt signaling pathways

    Primary brain calcification: an international study reporting novel variants and associated phenotypes.

    Get PDF
    Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with a wide spectrum of motor, cognitive, and neuropsychiatric symptoms. It is typically inherited as an autosomal-dominant trait with four causative genes identified so far: SLC20A2, PDGFRB, PDGFB, and XPR1. Our study aimed at screening the coding regions of these genes in a series of 177 unrelated probands that fulfilled the diagnostic criteria for primary brain calcification regardless of their family history. Sequence variants were classified as pathogenic, likely pathogenic, or of uncertain significance (VUS), based on the ACMG-AMP recommendations. We identified 45 probands (25.4%) carrying either pathogenic or likely pathogenic variants (n = 34, 19.2%) or VUS (n = 11, 6.2%). SLC20A2 provided the highest contribution (16.9%), followed by XPR1 and PDGFB (3.4% each), and PDGFRB (1.7%). A total of 81.5% of carriers were symptomatic and the most recurrent symptoms were parkinsonism, cognitive impairment, and psychiatric disturbances (52.3%, 40.9%, and 38.6% of symptomatic individuals, respectively), with a wide range of age at onset (from childhood to 81 years). While the pathogenic and likely pathogenic variants identified in this study can be used for genetic counseling, the VUS will require additional evidence, such as recurrence in unrelated patients, in order to be classified as pathogenic
    corecore