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INTRODUCTION 

Detection and enhancement of low contrast flaws in radiographie images with high noise 
fields is an ongoing topic of research in nondestructive evaluation. In film radiography, the 
minimum detectable flaw thickness is controIled by the exposure characteristics and the 
flaw size in relation to the thickness of the part. The exposure characteristics determine the 
overall sensitivity and noise level, while the flaw thickness controls the contrast of the flaw 
image with respect to the background film density. Often it is difficult to generate optimal 
exposures when inspecting thick objects or complicated part geometries. This can result in 
noisy images due to the poor counting statistics of the photons as weIl as optical film 
densities that are suboptimal for visual interpretation. In addition, flaw contrast is often 
extremely low due to the flaw size or the poor orientation of crack-like flaws. The goal of 
the work presented in this paper is to demonstrate the utility of digital image processing 
using the matched filter for detecting and enhancing flaws in low-contrast, high-noise 
radiographie images. The basic theory of the matched filter will be presented along with 
its application to two-dimensional images, In addition several practical examples will be 
shown on simulated and real radiographs. 

MATCHED FILTER BACKGROUND AND THEORY 

Matched filtering is a powerful technique for detecting signals in which the signal 
function is known apriori. It originated in 1943 in pulsed radar detection [1] and has 
recently been extended to two-dimensions and applied to images in blood vessel detection, 
cloud clutter suppression and fingerprint enhancement [2-4]. It is essentially a cross
correlation filter in which the correlation functions are the measured noisy signal or image 
and the expected ideal signal. The one-dimensional matched filter is given by Eq. (1) 

M 

g(m) = L!(i+m)h(i) (1) 
j=l 

wheref(i) is the measured noisy signal and h(i) is the expected signal to be detected. 

This filter can be generalized to the two-dimensional image and is given by 
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M N 
g(m,n) = L LfU+m,j+n)hU,j) 

i= 1 j= 1 

where f(i, j) is the measured image function, h(i, j) is a template containing the ideal 
expected signal or flaw function, and (M, N) is the size of the template, h . 

(2) 

In both the one and two-dimensional cases, the filters can equivalently be represented as 
convolutions for simple implementation in the frequency domain. However, we choose to 
use the correlation implementation since image processing hardware and software is readily 
available for fast template correlation. 

In the case of an image corrupted by additive white noise, the filter function, h, which 
contains the expected flaw signal can be shown to maximize the signal-to-noise ratio. 
Consider the general linear filter equation 

fo(m,n) = (fi(m,n) + ni(m,n») * h(m,n) 

where the image function consists of the ideal signalfi(m,n) with an additive noise term, 
ni (m,n). We can express the energy in the image due to the signal alone as 

1 S (m,n)1 2 = lfi(m,n) * h (m,n) 12 

and the energy in the image due to the white noise as 

The signal-to-noise ratio is given by 

It can be shown [5,6] that maximizing Eq. (7) with respect to the filter function, H, 
results in 

hU,j) = ~o f(m-i, n-j) . 

Thus, the optimal convolution template is given by a shifted and reversed version 
of the ideal signal,f The shifting of the signal implies that a maximum signal-to-noise 
ratio is obtained when the template is shifted to the signallocation in the image. 
Note that for correlation implementation, the optimal filter function is simply a shifted 
version of the ideal signal,f 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Radiographie images are typically corrupted by a combination of colored film grain 
noise and signal dependent Poisson counting noise [7]. Thus, when using a filter template 
defined by Eq. (8) the resulting S/N will not be maximized. This is not of extreme 
concern, however, because in most cases the S/N is additionally degraded due to the 
inexact signal or flaw modeling. Although the optimal filter could be derived through 
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knowledge of the non-white noise spectrum using a pre-whitening filter [7], we have 
chosen not to implement it in this preliminary study. 

Matched filtering is ideally suited for application to radiographie nondestructive testing 
because of the recent availability of radiographic inspection models [8] in which apriori 
information from a CAD model of the pan can be incorporated into the filter. In addition, 
the expected overall flaw morphology is often known ahead of time. The radiographic 
inspection model can be used to generate more optimal filter elements which would 
otherwise suffer from background mismatch. Use of matched filters on images generated 
by the radiographie inspection models can also yield insight into bounds on minimum 
detectable flaw size for a given inspection. In the case of crack detection, which is highly 
orientation dependent, banks of matched filters can be used for detection of the crack 
location and orientation. 

PRACfICAL EXAMPLES 

Matched filters have been implemented and evaluated on a variety of real and simulated 
radiographic images. The simulated images consist of models of sm all spherical voids in 
a flat plate geometry of varying thickness and a spherical void in a simulated complex shape 
casting. 

Figures 1-3 show the original flat-plate images with their corresponding results after 
matched filtering. The original images were generated using the x-ray simulation model of 
Gray et al. [9] and have flaw signal-to-noise ratios of 4.1 dB, -4.4 dB and -10 dB, 
respectively. The signal-to-noise ratios of the filtered images are 30 dB, 20 dB and 19 dB, 
respectively. The filter element used in this example was an 11 x 11 pixel circular 
hemisphere with a peak value of 1.0. Although this filter element is not optimal for 
maximum signal-to-noise improvement, it represents an acceptable compromise between 
performance, ease of implementation and an incomplete knowledge of the flaw 
morphology. The exact predicted filter shape could be computed, however, from the 
simulation model by anificially suppressing the noise. The pre-whitening filter could also 
be deterrnined from the noise process of the model. 

Notice that the original flaw signals in Figs. 2 and 3 are not visible to the eye, however, 
the filtered images readily reveal the flaw. Also notice the distorted flaw shape as well as 
the obvious texture in the filtered images. These characteristics are anifacts of the filtering 
and are currently under further investigation. 

Figure 1. Simulated radiograph of a spherical flaw in a flat plate geometry and filtered 
result. Original S/N = 4.1 dB; Filtered S/N = 30 dB. 
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Figure 2. Simulated radiograph of a spherical flaw in a flat plate geometry and filtered 
result. Original S/N = -4.4 dB; Filtered S/N = 20 dB. 

Figure 3. Simulated radiograph of a spherical flaw in a flat plate geometry and filtered 
result. Original S/N = -10 dB; Filtered S/N = 19 dB. 

Matched filtering is also ideally suited for application to part geometries in which the 
background can either be modeled through a CAD description of the part in conjunction 
with the x-ray simulation model or removed entirely. In the former case, the background 
geometry is modeled as a component of the signal with the expected flaw signal 
superimposed. For situations where the general flaw location is unknown, this procedure 
works weIl only for regions in which the geometrical background variation is relatively 
constant. In other cases, the background for the filter element can be adaptively modeled 
using the x-ray simulation model. 

The above procedure was applied to a simulated radiograph of an automobile air 
conditioner part shown in Figure 4a. The radiograph was generated using a CAD 
representation of the object and the x-ray simulation model. The object contains a spherical 
flaw along the outer right-hand edge of the part. The simulation model was also used to 
generate the matched filter template, consisting of a background trend with a 
superimposed hemispherical functioll. The elements o( the filter template are given by 
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[

29 23 18 11 
26 20 15 8 

h = 25 19 13 7 
24 18 13 6 
25 19 14 7 

(9) 

The resultant image after filtering is shown in Figure 4b. The signal-to-noise improvement 
for this ease was 10 dB. 

The matehed filter has also been applied to real high-noise, low-contrast radiographie 
images. Figure 5a shows a digitized radiograph of 3 adjaeent void-like flaws in an 
aluminum weid. In this ease, the true flaw shape and intensity is not known apriori. 
However, we have found that a general normalized hemispherieal funetion works weH for a 
wide variety of area-type flaws when its diameter is less than the overalliength of the flaw 
but is large enough for a eorrelation length sufficient to build up a good signal-to-noise 
ratio. 

The result of the matehed filter using a 13x 13 eircular hemispherieal filter element is 
shown in Figure 5b. The estimated S/N of the flaws in the original image from top to 
bottom are 5.6 dB, 2.9 dB and 0.8 dB. The corresponding estimated flaw S/N for the 
filtered image are 19 dB, 13 dB and 13 dB, respectively. Even with a suboptimal filter 
function, these results show a significant improvement over the original image. A 
thresholded version of the filtered image is shown in Figure 6. Notice that each of the three 
flaws is now easily detectable. 

Figure 7a shows a radiograph of a crack-like flaw in an aluminum weid. These types of 
flaws are easier to model and detect using matched filters since banks of filters ean be used 
to estimate the crack orientation and the filter size can be reduced to simulate a piecewise 
linear craek shape. A tradeoff in this situation is that the correlation length is often too 
short to obtain significant improvement in S/N. In the example shown here, however, the 
crack is very straight and has sufficient width for a good correlation length. Thus, the filter 
element can be chosen to be relatively large. Figure 7b shows the tiltered result using a 
two-dimensional horizontaHy invariant Gaussian with a 3a width of 2 pixels. The original 
estimated S/N was 3.5 dB and the filtered S/N was 17 dB. 

(a) (b) 

Figure 4. a) Original simulated radiograph of a complex casting part. 
b) Filtered result. 
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(a) (b) 

Figure 5. a) Original radiograph of void-like flaws in an aluminum weid. 
b) Fiitered result. 

Figure 6. Thresholded version of filtered image shown in Fig. 5b. 

(a) (b) 

Figure 7. a) Original radiograph of a crack-like flaw in an aluminum weid (invened). 
b) Fiitered result. 
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Figure 8. Result of matched filter using orthogonal template. 

In order to illustrate the dependence of filter template orientation on flaw detectability 
when inspecting for crack-like flaws, the matched filter was run using a template 
orthogonal to that used in Fig. 7b. The resulting image, shown in Figure 8, yields a 
smeared out feature with little S/N improvement. This filter, if incorporated in a matched 
filter bank would yield a relatively low output, as expected. 

CONCLUSIONS 

We have presented several results of matched filtering of high-noise, low-contrast 
radiographic images that demonstrate the usefulness of this technique. The matched filter is 
a simple, fast, and easy-to-implement routine for obtaining significam improvement in flaw 
detectability. We have demonstrated that the filter is quite forgiving in cases where the 
exact flaw shape andlor noise statistics are unknown. In such cases results are sub-optimal 
but often useful. Future work will address applications to more complicated part 
geometries as weil as to complicated crack like flaws. In addition, flaw shape distortion 
and noise texture will be studied. 
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