135 research outputs found

    The Evolution of the Galaxy Stellar Mass Function at z= 4-8: A Steepening Low-mass-end Slope with Increasing Redshift

    Get PDF
    We present galaxy stellar mass functions (GSMFs) at z=z= 4-8 from a rest-frame ultraviolet (UV) selected sample of \sim4500 galaxies, found via photometric redshifts over an area of \sim280 arcmin2^2 in the CANDELS/GOODS fields and the Hubble Ultra Deep Field. The deepest Spitzer/IRAC data yet-to-date and the relatively large volume allow us to place a better constraint at both the low- and high-mass ends of the GSMFs compared to previous space-based studies from pre-CANDELS observations. Supplemented by a stacking analysis, we find a linear correlation between the rest-frame UV absolute magnitude at 1500 \AA\ (MUVM_{\rm UV}) and logarithmic stellar mass (logM\log M_*) that holds for galaxies with log(M/M)10\log(M_*/M_{\odot}) \lesssim 10. We use simulations to validate our method of measuring the slope of the logM\log M_*-MUVM_{\rm UV} relation, finding that the bias is minimized with a hybrid technique combining photometry of individual bright galaxies with stacked photometry for faint galaxies. The resultant measured slopes do not significantly evolve over z=z= 4-8, while the normalization of the trend exhibits a weak evolution toward lower masses at higher redshift. We combine the logM\log M_*-MUVM_{\rm UV} distribution with observed rest-frame UV luminosity functions at each redshift to derive the GSMFs, finding that the low-mass-end slope becomes steeper with increasing redshift from α=1.550.07+0.08\alpha=-1.55^{+0.08}_{-0.07} at z=4z=4 to α=2.250.35+0.72\alpha=-2.25^{+0.72}_{-0.35} at z=8z=8. The inferred stellar mass density, when integrated over M=108M_*=10^8-1013M10^{13} M_{\odot}, increases by a factor of 102+3010^{+30}_{-2} between z=7z=7 and z=4z=4 and is in good agreement with the time integral of the cosmic star formation rate density.Comment: 27 pages, 17 figures, ApJ, in pres

    Meeting report : 1st international functional metagenomics workshop May 7–8, 2012, St. Jacobs, Ontario, Canada

    Get PDF
    This report summarizes the events of the 1st International Functional Metagenomics Workshop. The workshop was held on May 7 and 8 in St. Jacobs, Ontario, Canada and was focused on building a core international functional metagenomics community, exploring strategic research areas, and identifying opportunities for future collaboration and funding. The workshop was initiated by researchers at the University of Waterloo with support from the Ontario Genomics Institute (OGI), Natural Sciences and Engineering Research Council of Canada (NSERC) and the University of Waterloo

    Developing an Individual-level Geodemographic Classification

    Get PDF
    Geodemographics is a spatially explicit classification of socio-economic data, which can be used to describe and analyse individuals by where they live. Geodemographic information is used by the public sector for planning and resource allocation but it also has considerable use within commercial sector applications. Early geodemographic systems, such as the UK’s ACORN (A Classification of Residential Neighbourhoods), used only area-based census data, but more recent systems have added supplementary layers of information, e.g. credit details and survey data, to provide better discrimination between classes. Although much more data has now become available, geodemographic systems are still fundamentally built from area-based census information. This is partly because privacy laws require release of census data at an aggregate level but mostly because much of the research remains proprietary. Household level classifications do exist but they are often based on regressions between area and household data sets. This paper presents a different approach for creating a geodemographic classification at the individual level using only census data. A generic framework is presented, which classifies data from the UK Census Small Area Microdata and then allocates the resulting clusters to a synthetic population created via microsimulation. The framework is then applied to the creation of an individual-based system for the city of Leeds, demonstrated using data from the 2001 census, and is further validated using individual and household survey data from the British Household Panel Survey

    LBTO's long march to full operation: step 2

    Get PDF
    Step 1 (Veillet et al.1), after a review of the development of the Large Binocular Telescope Observatory (LBTO from the early concepts of the early 80s to mid-2014, outlined a six-year plan (LBT2020) aimed at optimizing LBTO's scientific production while mitigating the consequences of the inevitable setbacks brought on by the considerable complexity of the telescope and the very diverse nature of the LBTO partnership. Step 2 is now focusing on the first two years of implementation of this plan, presenting the encountered obstacles, technical, cultural and political, and how they were overcome. Weather and another incident with one of the Adaptive Secondaries slowed down commissioning activities. All the facility instruments should have been commissioned and offered in binocular mode in early or mid-2016. It will happen instead by the end of 2016. On a brighter side, the first scientific publications using the LBT as a 23-m telescope through interferometry were published in 2015 and the overall number of publications has been raising at a good pace. Three second generation instruments were selected, scheduled to come on the telescope in the next three to five years. They will all use the excellent performance of the LBT Adaptive Optics (AO), which will be even better thanks to an upgrade of the AO to be completed in 2018. Less progress than hoped was made to move the current observing mode of the telescope to a whole LBT-wide queue. In two years from now, we should have a fully operational telescope, including a laser-based Ground Layer AO (GLAO) system, hopefully fully running in queue, with new instruments in development, new services offered to the users, and a stronger scientific production

    Phase III Randomized Trial Comparing the Efficacy of Cediranib as Monotherapy and in Combination With Lomustine Versus Lomustine Alone in Patients With Recurrent Glioblastoma

    Get PDF
    Purpose: A randomized, phase III, placebo-controlled, partially blinded clinical trial (REGAL [Recentin in Glioblastoma Alone and With Lomustine]) was conducted to determine the efficacy of cediranib, an oral pan-vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor, either as monotherapy or in combination with lomustine versus lomustine in patients with recurrent glioblastoma. Patients and Methods: Patients (N = 325) with recurrent glioblastoma who previously received radiation and temozolomide were randomly assigned 2:2:1 to receive (1) cediranib (30 mg) monotherapy; (2) cediranib (20 mg) plus lomustine (110 mg/m2); (3) lomustine (110 mg/m2) plus a placebo. The primary end point was progression-free survival based on blinded, independent radiographic assessment of postcontrast T1-weighted and noncontrast T2-weighted magnetic resonance imaging (MRI) brain scans. Results: The primary end point of progression-free survival (PFS) was not significantly different for either cediranib alone (hazard ratio [HR] = 1.05; 95% CI, 0.74 to 1.50; two-sided P = .90) or cediranib in combination with lomustine (HR = 0.76; 95% CI, 0.53 to 1.08; two-sided P = .16) versus lomustine based on independent or local review of postcontrast T1-weighted MRI. Conclusion: This study did not meet its primary end point of PFS prolongation with cediranib either as monotherapy or in combination with lomustine versus lomustine in patients with recurrent glioblastoma, although cediranib showed evidence of clinical activity on some secondary end points including time to deterioration in neurologic status and corticosteroid-sparing effects

    “Super-deblended” dust emission in galaxies. I. The GOODS-North catalog and the cosmic star formation rate density out to redshift 6

    Get PDF
    We present a new technique to measure multi-wavelength “super-deblended” photometry from highly confused images, which we apply to Herschel and ground-based far-infrared (FIR) and (sub-)millimeter (mm) data in the northern field of the Great Observatories Origins Deep Survey. There are two key novelties. First, starting with a large database of deep Spitzer 24 μm and VLA 20 cm detections that are used to define prior positions for fitting the FIR/submm data, we perform an active selection of useful priors independently at each frequency band, moving from less to more confused bands. Exploiting knowledge of redshift and all available photometry, we identify hopelessly faint priors that we remove from the fitting pool. This approach significantly reduces blending degeneracies and allows reliable photometry to be obtained for galaxies in FIR+mm bands. Second, we obtain well-behaved, nearly Gaussian flux density uncertainties, individually tailored to all fitted priors for each band. This is done by exploiting extensive simulations that allow us to calibrate the conversion of formal fitting uncertainties to realistic uncertainties, depending on directly measurable quantities. We achieve deeper detection limits with high fidelity measurements and uncertainties at FIR+mm bands. As an illustration of the utility of these measurements, we identify 70 galaxies with z≥slant 3 and reliable FIR+mm detections. We present new constraints on the cosmic star formation rate density at 3< z< 6, finding a significant contribution from z≥slant 3 dusty galaxies that are missed by optical-to-near-infrared color selection. Photometric measurements for 3306 priors, including more than 1000 FIR+mm detections, are released publicly with our catalog

    Performance of the infrared array camera (IRAC) for SIRTF during instrument integration and test

    Get PDF
    The Infrared Array Camera (IRAC) is one of three focal plane instruments in the Space Infrared Telescope Facility (SIRTF). IRAC is a four-channel camera that obtains simultaneous images at 3.6, 4.5, 5.8, and 8 microns. Two adjacent 5.12x5.12 arcmin fields of view in the SIRTF focal plane are viewed by the four channels in pairs (3.6 and 5.8 microns; 4.5 and 8 microns). All four detector arrays in the camera are 256x256 pixels in size, with the two shorter wavelength channels using InSb and the two longer wavelength channels using Si:As IBC detectors. We describe here the results of the instrument functional and calibration tests completed at Ball Aerospace during the integration with the cryogenic telescope assembly, and provide updated estimates of the in-flight sensitivity and performance of IRAC in SIRTF

    Multiple paternity in a viviparous toad with internal fertilisation

    Get PDF
    Anurans are renowned for a high diversity of reproductive modes, but less than 1% of species exhibit internal fertilisation followed by viviparity. In the live bearing West African Nimba toad (Nimbaphrynoides occidentalis), females produce yolk-poor eggs and internally nourish their young after fertilisation. Birth of fully developed juveniles takes place after nine months. In the present study, we used genetic markers (eight microsatellite loci) to assign the paternity of litters of 12 females comprising on average 9.7 juveniles. In nine out of twelve families (75%) a single sire was sufficient; in three families (25%) more than one sire was necessary to explain the observed genotypes in each family. These findings are backed up with field observations of male resource defence (underground cavities in which mating takes place) as well as coercive mating attempts, suggesting that the observed moderate level of multiple paternity in a species without distinct sperm storage organs is governed by a balance of female mate choice and male reproductive strategies
    corecore