82 research outputs found

    Structure Modeling of All Identified G Protein–Coupled Receptors in the Human Genome

    Get PDF
    G protein–coupled receptors (GPCRs), encoded by about 5% of human genes, comprise the largest family of integral membrane proteins and act as cell surface receptors responsible for the transduction of endogenous signal into a cellular response. Although tertiary structural information is crucial for function annotation and drug design, there are few experimentally determined GPCR structures. To address this issue, we employ the recently developed threading assembly refinement (TASSER) method to generate structure predictions for all 907 putative GPCRs in the human genome. Unlike traditional homology modeling approaches, TASSER modeling does not require solved homologous template structures; moreover, it often refines the structures closer to native. These features are essential for the comprehensive modeling of all human GPCRs when close homologous templates are absent. Based on a benchmarked confidence score, approximately 820 predicted models should have the correct folds. The majority of GPCR models share the characteristic seven-transmembrane helix topology, but 45 ORFs are predicted to have different structures. This is due to GPCR fragments that are predominantly from extracellular or intracellular domains as well as database annotation errors. Our preliminary validation includes the automated modeling of bovine rhodopsin, the only solved GPCR in the Protein Data Bank. With homologous templates excluded, the final model built by TASSER has a global C(α) root-mean-squared deviation from native of 4.6 Å, with a root-mean-squared deviation in the transmembrane helix region of 2.1 Å. Models of several representative GPCRs are compared with mutagenesis and affinity labeling data, and consistent agreement is demonstrated. Structure clustering of the predicted models shows that GPCRs with similar structures tend to belong to a similar functional class even when their sequences are diverse. These results demonstrate the usefulness and robustness of the in silico models for GPCR functional analysis. All predicted GPCR models are freely available for noncommercial users on our Web site (http://www.bioinformatics.buffalo.edu/GPCR)

    New Zealand blackcurrant extract enhances fat oxidation during prolonged cycling in endurance-trained females.

    Get PDF
    PURPOSE: New Zealand blackcurrant (NZBC) extract has previously been shown to increase fat oxidation during prolonged exercise, but this observation is limited to males. We examined whether NZBC intake also increases fat oxidation during prolonged exercise in females, and whether this was related to greater concentrations of circulating fatty acids. METHODS: In a randomised, crossover, double-blind design, 16 endurance-trained females (age: 28 ± 8 years, BMI: 21.3 ± 2.1 kg·m-2, VO2max: 43.7 ± 1.1 ml·kg-1·min-1) ingested 600 mg·day-1NZBC extract (CurraNZ™) or placebo (600 mg·day-1microcrystalline cellulose) for 7 days. On day 7, participants performed 120 min cycling at 65% VO2max, using online expired air sampling with blood samples collected at baseline and at 15 min intervals throughout exercise for analysis of glucose, NEFA and glycerol. RESULTS: NZBC extract increased mean fat oxidation by 27% during 120 min moderate-intensity cycling compared to placebo (P = 0.042), and mean carbohydrate oxidation tended to be lower (P = 0.063). Pre-exercise, plasma NEFA (P = 0.034) and glycerol (P = 0.051) concentrations were greater following NZBC intake, although there was no difference between conditions in the exercise-induced increase in plasma NEFA and glycerol concentrations (P > 0.05). Mean fat oxidation during exercise was moderately associated with pre-exercise plasma NEFA concentrations (r = 0.45, P = 0.016). CONCLUSIONS: Intake of NZBC extract for 7 days elevated resting concentrations of plasma NEFA and glycerol, indicative of higher lipolytic rates, and this may underpin the observed increase in fat oxidation during prolonged cycling in endurance-trained females

    State-Dependent Effects of Ventromedial Prefrontal Cortex Continuous Thetaburst Stimulation on Cocaine Cue Reactivity in Chronic Cocaine Users

    Get PDF
    Cue-induced craving is a significant barrier to obtaining abstinence from cocaine. Neuroimaging research has shown that cocaine cue exposure evokes elevated activity in a network of frontal-striatal brain regions involved in drug craving and drug seeking. Prior research from our laboratory has demonstrated that when targeted at the medial prefrontal cortex (mPFC), continuous theta burst stimulation (cTBS), an inhibitory form of non-invasive brain stimulation, can decrease drug cue-related activity in the striatum in cocaine users and alcohol users. However, it is known that there are individual differences in response to repetitive transcranial magnetic stimulation (rTMS), with some individuals being responders and others non-responders. There is some evidence that state-dependent effects influence response to rTMS, with baseline neural state predicting rTMS treatment outcomes. In this single-blind, active sham-controlled crossover study, we assess the striatum as a biomarker of treatment response by determining if baseline drug cue reactivity in the striatum influences striatal response to mPFC cTBS. The brain response to cocaine cues was measured in 19 cocaine-dependent individuals immediately before and after real and sham cTBS (110% resting motor threshold, 3600 total pulses). Group independent component analysis (ICA) revealed a prominent striatum network comprised of bilateral caudate, putamen, and nucleus accumbens, which was modulated by the cocaine cue reactivity task. Baseline drug cue reactivity in this striatal network was inversely related to change in striatum reactivity after real (vs. sham) cTBS treatment (ρ = -.79; p < .001; R2Adj = .58). Specifically, individuals with a high striatal response to cocaine cues at baseline had significantly attenuated striatal activity after real but not sham cTBS (t9 = -3.76; p ≤ .005). These data demonstrate that the effects of mPFC cTBS on the neural circuitry of craving are not uniform and may depend on an individual’s baseline frontal-striatal reactivity to cues. This underscores the importance of assessing individual variability as we develop brain stimulation treatments for addiction

    Day and night closed-loop control in adults with type 1 diabetes: a comparison of two closed-loop algorithms driving continuous subcutaneous insulin infusion versus patient self-management.

    Get PDF
    OBJECTIVE: To compare two validated closed-loop (CL) algorithms versus patient self-control with CSII in terms of glycemic control. RESEARCH DESIGN AND METHODS: This study was a multicenter, randomized, three-way crossover, open-label trial in 48 patients with type 1 diabetes mellitus for at least 6 months, treated with continuous subcutaneous insulin infusion. Blood glucose was controlled for 23 h by the algorithm of the Universities of Pavia and Padova with a Safety Supervision Module developed at the Universities of Virginia and California at Santa Barbara (international artificial pancreas [iAP]), by the algorithm of University of Cambridge (CAM), or by patients themselves in open loop (OL) during three hospital admissions including meals and exercise. The main analysis was on an intention-to-treat basis. Main outcome measures included time spent in target (glucose levels between 3.9 and 8.0 mmol/L or between 3.9 and 10.0 mmol/L after meals). RESULTS: Time spent in the target range was similar in CL and OL: 62.6% for OL, 59.2% for iAP, and 58.3% for CAM. While mean glucose level was significantly lower in OL (7.19, 8.15, and 8.26 mmol/L, respectively) (overall P = 0.001), percentage of time spent in hypoglycemia (<3.9 mmol/L) was almost threefold reduced during CL (6.4%, 2.1%, and 2.0%) (overall P = 0.001) with less time ≤2.8 mmol/L (overall P = 0.038). There were no significant differences in outcomes between algorithms. CONCLUSIONS: Both CAM and iAP algorithms provide safe glycemic control

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant PHY 92-21489U.S. Navy - Office of Naval Research Grant N00014-90-J-1322National Science Foundation Grant PHY95-14795Charles S. Draper Laboratory Contract DL-H-484775U.S. Army Research Office Contract DAAH04-94-G-0170U.S. Army Research Office Contract DAAH04-95-1-0533U.S. Navy - Office of Naval Research Contract N00014-89-J-1207U.S. Navy - Office of Naval Research Contract N000014-96-1-0432David and Lucile Packard Foundation Grant 96-5158National Science Foundation Grant PHY95-01984U.S. Army - Office of ResearchU.S. Navy - Office of Naval Research Contract N00014-96-1-0485U.S. Navy - Office of Naval Research AASERT N00014-94-1-080

    Women Have Higher Protein Content of β-Oxidation Enzymes in Skeletal Muscle than Men

    Get PDF
    It is well recognized that compared with men, women have better ultra-endurance capacity, oxidize more fat during endurance exercise, and are more resistant to fat oxidation defects i.e. diet-induced insulin resistance. Several groups have shown that the mRNA and protein transcribed and translated from genes related to transport of fatty acids into the muscle are greater in women than men; however, the mechanism(s) for the observed sex differences in fat oxidation remains to be determined. Muscle biopsies from the vastus lateralis were obtained from moderately active men (N = 12) and women (N = 11) at rest to examine mRNA and protein content of genes involved in lipid oxidation. Our results show that women have significantly higher protein content for tri-functional protein alpha (TFPα), very long chain acyl-CoA dehydrogenase (VLCAD), and medium chain acyl-CoA dehydrogenase (MCAD) (P<0.05). There was no significant sex difference in the expression of short-chain hydroxyacyl-CoA dehydrogenase (SCHAD), or peroxisome proliferator activated receptor alpha (PPARα), or PPARγ, genes potentially involved in the transcriptional regulation of lipid metabolism. In conclusion, women have more protein content of the major enzymes involved in long and medium chain fatty acid oxidation which could account for the observed differences in fat oxidation during exercise

    DNA Fragmentation Simulation Method (FSM) and Fragment Size Matching Improve aCGH Performance of FFPE Tissues

    Get PDF
    Whole-genome copy number analysis platforms, such as array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) arrays, are transformative research discovery tools. In cancer, the identification of genomic aberrations with these approaches has generated important diagnostic and prognostic markers, and critical therapeutic targets. While robust for basic research studies, reliable whole-genome copy number analysis has been unsuccessful in routine clinical practice due to a number of technical limitations. Most important, aCGH results have been suboptimal because of the poor integrity of DNA derived from formalin-fixed paraffin-embedded (FFPE) tissues. Using self-hybridizations of a single DNA sample we observed that aCGH performance is significantly improved by accurate DNA size determination and the matching of test and reference DNA samples so that both possess similar fragment sizes. Based on this observation, we developed a novel DNA fragmentation simulation method (FSM) that allows customized tailoring of the fragment sizes of test and reference samples, thereby lowering array failure rates. To validate our methods, we combined FSM with Universal Linkage System (ULS) labeling to study a cohort of 200 tumor samples using Agilent 1 M feature arrays. Results from FFPE samples were equivalent to results from fresh samples and those available through the glioblastoma Cancer Genome Atlas (TCGA). This study demonstrates that rigorous control of DNA fragment size improves aCGH performance. This methodological advance will permit the routine analysis of FFPE tumor samples for clinical trials and in daily clinical practice

    Resistance Exercise Reverses Aging in Human Skeletal Muscle

    Get PDF
    Human aging is associated with skeletal muscle atrophy and functional impairment (sarcopenia). Multiple lines of evidence suggest that mitochondrial dysfunction is a major contributor to sarcopenia. We evaluated whether healthy aging was associated with a transcriptional profile reflecting mitochondrial impairment and whether resistance exercise could reverse this signature to that approximating a younger physiological age. Skeletal muscle biopsies from healthy older (N = 25) and younger (N = 26) adult men and women were compared using gene expression profiling, and a subset of these were related to measurements of muscle strength. 14 of the older adults had muscle samples taken before and after a six-month resistance exercise-training program. Before exercise training, older adults were 59% weaker than younger, but after six months of training in older adults, strength improved significantly (P<0.001) such that they were only 38% lower than young adults. As a consequence of age, we found 596 genes differentially expressed using a false discovery rate cut-off of 5%. Prior to the exercise training, the transcriptome profile showed a dramatic enrichment of genes associated with mitochondrial function with age. However, following exercise training the transcriptional signature of aging was markedly reversed back to that of younger levels for most genes that were affected by both age and exercise. We conclude that healthy older adults show evidence of mitochondrial impairment and muscle weakness, but that this can be partially reversed at the phenotypic level, and substantially reversed at the transcriptome level, following six months of resistance exercise training

    Comprehensive transcriptome of the maize stalk borer, Busseola fusca, from multiple tissue types, developmental stages, and parasitoid wasp exposures

    Get PDF
    International audienc

    High aboveground carbon stock of African tropical montane forests

    Get PDF
    Tropical forests store 40-50 per cent of terrestrial vegetation carbon(1). However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests(2). Owing to climatic and soil changes with increasing elevation(3), AGC stocks are lower in tropical montane forests compared with lowland forests(2). Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1-164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network(4) and about 70 per cent and 32 per cent higher than averages from plot networks in montane(2,5,6) and lowland(7) forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa(8). We find that the low stem density and high abundance of large trees of African lowland forests(4) is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse(9,10) and carbon-rich ecosystems. The aboveground carbon stock of a montane African forest network is comparable to that of a lowland African forest network and two-thirds higher than default values for these montane forests.Peer reviewe
    corecore