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Abstract

Busseola fusca (Fuller) (Lepidoptera: Noctuidae), the maize stalk borer, is a widespread 

crop pest in sub-Saharan Africa that has been the focus of biological research and 

intensive management strategies.  Here, we present a comprehensive annotated 

transcriptome of B. fusca (originally collected in the Western Province of Kenya) based 

on ten pooled libraries including a wide array of developmental stages, tissue types, and 

exposures to parasitoid wasps. Parasitoid wasps have been used as a form of 

biocontrol to try and reduce crop losses with variable success, in part due to differential 

infectivities and immune responses among wasps and hosts. We identified a number of 

loci of interest for pest management, including genes potentially involved in 

chemoreception, immunity, and response to insecticides. The comprehensive sampling 

design used expands our current understanding of the transcriptome of this species and 

deepens the list of potential target genes for future crop loss mitigation, in addition to 

highlighting candidate loci for differential expression and functional genetic analyses in 

this important pest species.

Significance Statement
Despite growing interest in the role of genomics as a method of ensuring food security, 

there are few examples where new technologies have been applied to insect species 

that devastate staple food crops in sub-Saharan Africa.  Here, we present the 

transcriptome of Busseola fusca, the maize stalk borer, a lepidopteran known to be 

responsible for massive crop losses.  The assembly and annotation provided represents 

a key step towards identifying candidate genes for the control and mitigation of 

infestations by B. fusca throughout regions where it is found.
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Introduction

The maize stalk borer, Busseola fusca (Fuller) (Lepidoptera: Noctuidae; Figure 1), is an 
important pest of cereal crops in sub-Saharan Africa. Due to its abundance and 
distribution, it represents a major constraint to food production where infestation rates 
are high (Kfir et al. 2002). Crop losses resulting from B. fusca feeding activity vary by 
region, but can result in a total loss in some areas (Van den Berg et al. 1991, Calatayud 
et al. 2014). Its impact on the food security and economic well-being of people has led 
to a number of studies into the physiology and ecology of the species (reviewed in 
Calatayud et al. 2014).  With the release of the genome (from the same lineage used in 
this study; Hardwick et al. 2019) and the publication of the first transcriptome (derived 
from neonate tissue from a genotype collected in South Africa; Peterson et al. 2019), we 
now have basic genomic information for this species.  With pest species, in particular, 
the identification of candidate genes related to important traits such as developmental 
timing, reproduction, insecticide resistance, adaptation to plant defense mechanisms, 
immunity, and chemoreception requires sampling multiple time points, exposures, and 
populations. This is particularly relevant in B. fusca, where certain strains are known to 
be differentially vulnerable to infection by parasitoid wasps (Kfir 1995). This information, 
in turn, can inform or enhance management strategies (e.g., those developed for 
Plutella xylostella [You et al. 2013]).

Female B. fusca typically deposit eggs (Figure 1A) between the stem and leaf sheet of 
the host plant. Larvae hatch (Figure 1B), feed on young leaves, and penetrate the plant 
stem during the third and fourth instar (Figure 1C) where they remain until pupation. 
Feeding during the larval stage, which is also when the animals are vulnerable to 
parasitoid wasps (Figure 1D), damages the host plant and reduces yield or kills the 
plant. After pupation, adult moths (Figure 1E) use chemosensory cues and receptors to 
attract and find mates, food, and suitable places to lay eggs. Pest management 
strategies can include, for example, introducing substances that can interrupt sending or 
receiving chemosensory cues to/from mature adults or can include the introduction of 
biocontrol species to which the focal species is unable to mount a defense response. 
Because it involves fewer chemicals, biological control is a pest management strategy 
that has been employed with B. fusca over the last several decades. Beginning in the 
1990s, a biocontrol program was launched in Kenya using the indigenous larval 
parasitoid of B. fusca, Cotesia sesamiae (Cameron; Hymenoptera: Braconidae; Figure 
1D).  Prevalence of parasitism by C. sesamiae can vary (ranging from <5% to 75% [Kfir 
1995; Sallam et al. 1999; Jiang et al. 2006; Songa et al. 2007]), in part due to 
differences among wasp strains (Mochiah et al. 2002; Gitau et al. 2010; Branca et al. 
2011). Busseola fusca are resistant to infection by C. sesamiae from Mombasa (coastal 
Kenya), referred to hereon as Cs-Coast, but vulnerable to C. sesamiae from Kitale (a 
site in inland Kenya; referred to hereon as Cs-Inland; Ngi-Song et al. 1995).  

Here, we present a comprehensive transcriptome of B. fusca based on data from 10 
libraries representing different tissues, developmental stages, and parasitoid-exposure 
treatments. Phylogeographic studies (Sezonlin et al. 2006; Dupas et al. 2014) and 
reports of dominant inheritance of field-evolved resistance to Bt maize (Campagne et al. 
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2013) represent the current frontier, in terms of studies of individual genes. We use the 
transcriptome to identify important candidate genes and gene families, as well as 
investigating the transcriptomic profiles of non-genic regions, for future research and 
ongoing management efforts aimed at curbing the effects of this devastating crop pest.

Methods

See Supplemental Methods for complete details. Briefly, sample collection, preparation, 
and sequencing were performed at the International Centre of Insect Physiology and 
Ecology (icipe) and Biosciences eastern and central Africa genomics facility at the 
International Livestock Research Institute in Nairobi, Kenya (BecA-ILRI Hub).  
Specimens were obtained from a colony initiated from larvae collected in maize fields 
from the Western Province of Kenya in 2008, and maintained on an artificial diet under 
laboratory conditions at icipe. RNA extractions were performed on 10 different B. fusca 
tissues types, (thoraces, antennae [both sexes], and female ovipositor), developmental 
stages (eggs, neonates, fourth instar larvae, and adults [both sexes]), and parasitoid-
exposure conditions (unexposed and exposed to two strains of wasp; Table S1). We 
used a TruSeq RNA Library Prep Kit (Illumina) to prepare libraries and performed next-
generation sequencing using Illumina MiSeq technology, resulting in 10 libraries of 300 
bp paired-end reads (Table S2). Sequence data are available on NCBI SRA (BioProject: 
PRJNA553865).  We used the RNA-seq de novo assembly program Trinity (version 2.4; 
Grabherr et al. 2011) to assemble the transcriptome (Table 1), and generated a set of 
non-redundant unigenes from our transcripts using the program CD-HIT (version 4.7; Li 
and Godzick 2006; Fu et al. 2012). The transcriptome assembly is available on NCBI 
(BioProject: PRJNA553865). We also assembled each library individually, and 
generated library-specific sets of non-redundant unigenes with CD-HIT. We ran BUSCO 
(version 3; Waterhouse et al. 2017) to assess the completeness of our assembly and 
Trinotate (v. 3.0.2; Bryant et al. 2017) to annotate the transcriptome. We quantified the 
distribution of genes within different gene ontology (GO) categories using WEGO 
(version 2.0; Ye et al. 2018; Figure S1). Finally, we used OrthoFinder (version 2.3.3; 
Emms and Kelly 2019) to identify orthologous gene clusters among Lepidopteran 
transcriptomes and identified the 20 largest gene families in B. fusca. We identified the 
top 25 most highly expressed transcripts for each RNA library by mapping reads from 
each library to the pooled transcriptome assembly unigenes using the program STAR 
(version 2.7; Dobin et al. 2013) and generated unique lists of the 25 transcripts with the 
highest RPKM values for each. 

Results
 
Our B. fusca transcriptome (Table 1 and Table S2; BioProject PRJNA553865), which 
contained >99% of the conserved single-copy orthologs used by BUSCO to assess 
completeness, contains approximately 1/3 more transcripts than previously known for 
this species, greatly expanding the number of genes available for further investigation 
(Peterson et al. 2019). The median number of isoforms per gene was one for all 
individual libraries, with library 5_S5_L001 (infection treatment: exposed Cs-Inland) 
having the highest maximum number of isoforms for a single transcript (transcript 
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TRINITY_DN8760_c0_g1, with 45 isoforms reported by Trinity). Furthermore, the 
antenna libraries (4_S4_L001 and 3_S3_L001) had the highest percentage of genes 
with greater than one isoform per gene (21.1% and 19.4%, respectively), while the egg 
library (2_S2_L001) had the lowest (6.6%). We annotated the assembled B. fusca 
transcriptome using Trinotate and identified 22,707 protein-coding genes and generated 
a set of 39,445 proteins overall. We identified more protein-coding genes than 
were predicted in the previously published B. fusca whole genome assembly (19,417; 
Hardwick et al. 2019). Of the 22,707 predicted protein-coding genes found in this study, 
19,401 aligned to the genome assembly. The additional 4,306 genes identified in this 
study may represent alternative transcripts or fusion transcripts that the transcriptome 
annotation software does not recognize as variants produced by a given locus or loci. 
Alternatively, it possible these sequences were unrecognized by the genome annotation 
software because the depth of sequencing coverage for the whole genome sequencing 
project was insufficient to fully assemble the genome given its size (~500 Mb) and 
repeat content (~50%).

Figure S1 gives an overview of the GO terms associated with all annotated transcripts 
in the B. fusca transcriptome assembly after 20,118 of genes were assigned to gene 
ontology categories using Trinotate. Using protein sets from Bombyx mori, Manduca 
sexta, and Plutella xylostella, we searched for orthologs in B. fusca and characterized 
gene families. The top 20 largest gene families identified by OrthoFinder are listed in 
Table S3. We report the most abundant transcripts across all libraries (Table S4) and in 
each individual tissue type, developmental stage, and infection treatment (Tables S5-7) 
and between male and female antennae (Table S8) and thoraces (Table S9). We also 
characterize the non-genic transcriptomic profiles by reporting the diversity of 
transposable elements (TEs) transcribed in each library (Table S10) and the evidence 
for transcription of putatively horizontally-transferred regions of the genome based on 
high identity between sequences in B. fusca and Cotesia sesamiae (both strains; Table 
S11).

Discussion

Because food security is an essential component of public health worldwide, managing 
pests that target major crop species is crucial (World Bank 2008).  Here, we sequenced, 
assembled, and annotated the transcriptome of B. fusca to try and identify candidate 
genes for pest management strategies and to understand more about the biology of this 
species. This study expands on previously published transcriptomic resources in 
several ways. In particular, we analyzed data from 10 different RNA-Seq libraries 
spanning multiple life stages, tissue types, and sexes. The inclusion of these groups 
allowed us to identify additional transcripts relative to previous studies. Our full 
transcriptome assembly includes 240,022 sequences. In contrast, the only other B. 
fusca transcriptome published to date using the larval stage only identified 170,756 
transcript sequences (Peterson et al. 2019). The current study also expands on the 
geographical range of B. fusca populations surveyed; while the previously published 
transcriptome is based on tissues from individuals that originated in South Africa, our 
work focuses on individuals originating from Western Province, Kenya. The inclusion of 
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these additional populations, developmental stages, and tissues will aid in the 
development of targeted pest control based on life cycle and behavior in this destructive 
species.

Based on our transcriptome (see Supplemental Methods and Results for complete 
details), we identified genes of interest putatively involved in chemoreception. A number 
of the transcripts with potential chemosensory function were abundant in the antennae 
relative to other tissue types. Specifically, 10 out of 25 transcripts uniquely highly 
expressed in the antennae had significant homology to General odorant-binding 
proteins (Table S7). General odorant-binding proteins are distributed in the sensilla, and 
function to bind odorants and transport them to odorant receptors. General odorant-
binding proteins have been shown to be involved in the detection of plant volatiles (Vogt 
et al. 2002; Nardi et al. 2003; Maida et al. 2005; Liu et al. 2015). We also observed 
differences between male and female libraries in genes expressed in the antennae, 
which may be of interest for determining sex-specific chemosensory genes. For 
example, while both males and females showed high expression of General odorant-
binding proteins, we identified suites of uniquely abundant General odorant-binding 
proteins that were distinct for each sex (Table S8). In addition, the female antenna 
library exhibited elevated abundance of two transcripts with high similarity to 
Pheromone-binding protein. Pheromone binding proteins are typically associated with 
the detection of female sex pheromones by males, but some studies have identified 
high levels of expression of these genes in female antennae of moths in the family 
Noctuidae (e.g., Callahan et al. 2000). The abundance of these transcripts in females 
may suggest a role of Pheromone-binding protein genes in detecting odorants other 
than sex pheromone in B. fusca.

We also sought to better understand immune response in B. fusca, by identifying 
transcripts expressed in larvae infected by the parasitoid C. sesamiae. Busseola fusca 
exhibits differential susceptibility to infection by C. sesamiae from coastal and inland 
subpopulations. To shed light on the biological mechanisms underlying this difference, 
we assessed gene expression in larva exposed to Cs-Inland and Cs-Coast, with the 
goal of determining immune genes highly expressed in each treatment. Fourteen of the 
25 most highly expressed transcripts in the Cs-Coast treatment had significant 
sequence similarity to the gene Arylphorin (Table S5). Arylphorin was also the largest B. 
fusca gene family identified via our analysis of orthologous gene clusters (Table S4). 
Arylphorin is a storage protein produced throughout larval instars in Lepidoptera 
(Riddiford 1995), and has also been proposed to play a role in humoral immune defense 
in response to bacterial infection (Freitak et al. 2007). In contrast to the Cs-Coast 
treatment, larvae in the Cs-Inland treatment showed high expression of the genes 
Gloverin and Lebocin, both of which have antimicrobial function in Lepidoptera 
(reviewed in Yi et al. 2014). These results indicate that Arylphorin, Gloverin, and 
Lebocin may be good targets for future research to understand why Cs-Inland are able 
to successfully parasitize B. fusca larva, while Cs-Coast are not. 

We identified several large gene families potentially of interest for understanding B. 
fusca’s response to insecticides. One of the largest B. fusca gene clusters we identified 
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was the Xanthine dehydrogenase family, encompassing five genes and nine isoforms. 
Xanthine dehydrogenase is known to be involved in the production of nitrogenous 
excretory compounds (Bergmann and Dikstein 1955; Cochran 1985), and has also been 
implicated in phytochemical detoxification (Slansky 1993). Previous research has found 
that duplication of the Xanthine dehydrogenase gene is related to resistance to 
organophosphorus insecticide resistance in mosquitoes (Coleman and Hemingway 
1997). We also identified a large B. fusca gene family corresponding to the Transient 
receptor potential channel pyrexia gene. This family encompassed five genes and six 
isoforms. Transient receptor potential (TRP) genes are related to environmental 
perception in insects (Venkatachalam and Montell 2007; Fowler and Montell 2013), and 
are common targets of insecticides (Nesterov et al. 2015; Kandasamy 2017; Kwon et al. 
2010). Additional research to identify the specific functions of the large Xanthine 
dehydrogenase and TRP pyrexia gene families in B. fusca may shed light on the 
potential for insecticide resistance in this species, and inform future control efforts. 
Future studies may also utilize our transcriptomic resources to better understand Cry 
toxin resistance by looking at tissue-specific expression of genes such as alkaline 
phosphatase, aminopeptidase N, cadherin Cry toxin receptor, ATP-binding cassette 
transporters, and mitogen-activated protein kinases (Peterson et al. 2017).

We identified a number of highly abundant transcripts in the antennae which were 
annotated as Replicase polyproteins (Table S7). Upon further investigation, these 
sequences had significant BLAST hits to iflavirus sequences. Iflaviruses are single-
stranded RNA viruses that to date have been shown to exclusively infect arthropods 
(Van Oers 2010). RNA derived from iflaviruses occur at high concentrations in the 
antennae of infected individuals (Dos Santos et al. 2019). To our knowledge, iflavirus 
infection has not previously been observed in B. fusca and the significance of infection 
should be investigated further. To characterize the non-genic components of the 
transcriptome, we used the previously curated repeat library (from Hardwick et al. 2019) 
to search against the transcriptomes (Table S10). The majority of transposable 
elements in B. fusca are expressed in each of the individual transcriptomes, with the 
greatest diversity transcribed in male antennae. We also used low coverage draft 
sequences generated from the two parasitoid wasp strains (C. sesamiae Kitale and 
Mombasa) to identify candidate sequences that may have been horizontally-transferred 
to or from B. fusca (Supplemental Data File S6) and are transcribed (14 of 17 identified 
candidates; Table S11). Interestingly, three of the candidate regions appeared to be of 
bracoviral origin, suggesting that, as with many other insects (e.g., Gasmi et al. 2015), 
viruses may play an instrumental role in both the genomic and transcriptomic profile of 
B. fusca.

Conclusion

By sequencing a comprehensive set of ten libraries representing different 
developmental stages, tissue types, and parasitoid exposures, our transcriptome 
contains the largest number of expressed transcripts available to date and has allowed 
us to identify a number of loci of interest for potential pest management. Namely, loci 
potentially involved in chemoreception, response to infection, and response to 
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insecticides could serve as promising targets for future research. We hope insights from 
the B. fusca transcriptome will aid ongoing efforts to develop control measures that can 
be deployed as part of an integrated pest management strategy in order to reduce B. 
fusca’s impact on food security across the continent.
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Figure 1. Busseola fusca (A) eggs, (B) neonates after hatching, (C) 4th instar larva, (D) 
parasitoid wasp, Cotesia sesamiae (female), used for exposure treatment, and (E) adult 
(female).
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Table 1. Assembly statistics for B. fusca transcriptome from 10 pooled libraries derived 
from tissue sampled from specimens originally collected in Western Province, Kenya.

Transcriptome 
(Full Assembly)

Transcriptome 
(Unigenes)

Total size (bp) 171,925,619 116,455,446

Number of transcripts 240,022 185,159

Number of genes 129,814 123,344

Number of protein-coding genes 23,374 22,707

Number of proteins 59,341 39,445

Maximum transcript length (bp) 28,079 28,079

Median transcript length (bp) 398 377

% GC 40.1 40.2

% BUSCO genes- Eukaryota 99.6 99.6

% BUSCO genes- Arthropoda 99.1 99.2

% BUSCO genes- Insecta 98.7 98.6
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