174 research outputs found

    Some notes on religion and democratic liberty

    Get PDF
    "My intention is to discuss briefly several elements of the connection between liberal democracy and religion. This topic is decisive in much of Richard Neuhaus’ work. Conserving liberty is a central task today, and religion’s place in this task important, although controversial."(...

    Hegel and progressivism

    Get PDF
    "We often assert that the United States’ constitutional principles began to change near the beginning of the twentieth century. This change is associated with “progressivism.” It was trumpeted by publicists and authors such as Herbert Croly and John Dewey, and implemented by political leaders such as Woodrow Wilson and the two Roosevelts. Progressivism involves moving away from limited government toward the beginnings of the welfare state, increasing the regulation of business, expanding the dominance of the President over Congress, justifying direct appeals from the President to the people (leadership as opposed to statesmanship), and attacking the teaching of individual natural rights in favor of group interests, mass appeals, and some forms of (weak) collectivism."(...

    Turbulence, Feedback, and Slow Star Formation

    Get PDF
    One of the outstanding puzzles about star formation is why it proceeds so slowly. Giant molecular clouds convert only a few percent of their gas into stars per free-fall time, and recent observations show that this low star formation rate is essentially constant over a range of scales from individual cluster-forming molecular clumps in the Milky Way to entire starburst galaxies. This striking result is perhaps the most basic fact that any theory of star formation must explain. I argue that a model in which star formation occurs in virialized structures at a rate regulated by supersonic turbulence can explain this observation. The turbulence in turn is driven by star formation feedback, which injects energy to offset radiation from isothermal shocks and keeps star-forming structures from wandering too far from virial balance. This model is able to reproduce observational results covering a wide range of scales, from the formation times of young clusters to the extragalactic IR-HCN correlation, and makes additional quantitative predictions that will be testable in the next few years.Comment: 4 pages, 2 figures, CUP conference format. To be published in "IAU Symposium 237: Triggered Star Formation in a Turbulent ISM", eds. B. Elmegreen & J. Palou

    OH yields from the CH3CO+O-2 reaction using an internal standard

    Get PDF
    Laser flash photolysis of CH3C(O)OH at 248 nm was used to create equal zero time yields of CH3CO and OH. The absolute OH yield from the CH3CO + O2 (+M) reaction was determined by following the OH temporal profile using the zero time OH concentration as an internal standard. The OH yield from CH3CO + O2 (+M) was observed to decrease with increasing pressure with an extrapolated zero pressure yield close to unity (1.1 ± 0.2, quoted uncertainties correspond to 95% confidence limits). The results are in quantitative agreement with those obtained from 248 nm acetone photolysis in the presence of O2

    The Atomic to Molecular Transition in Galaxies. II: HI and H_2 Column Densities

    Full text link
    Gas in galactic disks is collected by gravitational instabilities into giant atomic-molecular complexes, but only the inner, molecular parts of these structures are able to collapse to form stars. Determining what controls the ratio of atomic to molecular hydrogen in complexes is therefore a significant problem in star formation and galactic evolution. In this paper we use the model of H_2 formation, dissociation, and shielding developed in the previous paper in this series to make theoretical predictions for atomic to molecular ratios as a function of galactic properties. We find that the molecular fraction in a galaxy is determined primarily by its column density and secondarily by its metallicity, and is to good approximation independent of the strength of the interstellar radiation field. We show that the column of atomic hydrogen required to shield a molecular region against dissociation is ~10 Msun pc^-2 at solar metallicity. We compare our model to data from recent surveys of the Milky Way and of nearby galaxies, and show that the both the primary dependence of molecular fraction on column density and the secondary dependence on metallicity that we predict are in good agreement with observed galaxy properties.Comment: Accepted to ApJ. 22 pages, 13 figures, emulateapj format. This version corrects a minor error in the binning procedure in section 4.1.2. The remainder of the paper is unchange

    Time-Resolved Measurements and Master Equation Modelling of the Unimolecular Decomposition of CH3OCH2

    Get PDF
    The rate coefficient for the unimolecular decomposition of CH3OCH2,k(1), has been measured in time-resolved experiments by monitoring the HCHO product. CH3OCH2 was rapidly and cleanly generated by 248 nm excimer photolysis of oxalyl chloride, (ClCO)(2), in an excess of CH3OCH3, and an excimer pumped dye laser tuned to 353.16 nm was used to probe HCHO via laser induced fluorescence. k(1)(T,p) was measured over the ranges: 573-673 K and 0.1-4.3 x 10(18) molecule cm(-3) with a helium bath gas. In addition, some experiments were carried out with nitrogen as the bath gas. Ab initio calculations on CH3OCH2 decomposition were carried out and a transition-state for decomposition to CH3 and H2CO was identified. This information was used in a master equation rate calculation, using the MESMER code, where the zero-point-energy corrected barrier to reaction, Delta E-0,E-1, and the energy transfer parameters, x T-n, were the adjusted parameters to best fit the experimental data, with helium as the buffer gas. The data were combined with earlier measurements by Loucks and Laidler (Can J. Chem. 1967, 45, 2767), with dimethyl ether as the third body, reinterpreted using current literature for the rate coefficient for recombination of CH3OCH2. This analysis returned Delta E-0,E-1 = (112.3 +/- 0.6) kJ mol(-1), and leads to k(1)(infinity)(T) = 2.9 x 10(12) (T/300)(2)(.5) exp(-106.8 kJ mol(-1)/RT). Using this model, limited experiments with nitrogen as the bath gas allowed N-2 energy transfer parameters to be identified and then further MESMER simulations were carried out, where N-2 was the buffer gas, to generate k(1)(T,p) over a wide range of conditions: 300-1000 K and N-2 = 10(12) -10(25) molecule cm(-3). The resulting k(1)(T,p) has been parameterized using a Troe-expression, so that they can be readily be incorporated into combustion models. In addition, k(1)(T,p) has been parametrized using PLOG for the buffer gases, He, CH3OCH3 and N-2.Peer reviewe

    The gas-phase reaction of NH2 with formaldehyde (CH2O) is not a source of formamide (NH2CHO) in interstellar environments

    Full text link
    The first experimental study of the low-temperature kinetics of the gas-phase reaction of NH2 with formaldehyde (CH2O) has been performed. This reaction has previously been suggested as a source of formamide (NH2CHO) in interstellar environments. A pulsed Laval nozzle equipped with laser-flash photolysis and laser-induced fluorescence spectroscopy was used to create and monitor the temporal decay of NH2 in the presence of CH2O. No loss of NH2 could be observed via reaction with CH2O and we place an upper-limit on the rate coefficient of <6x10-12 cm3 molecule-1 s-1 at 34K. Ab initio calculations of the potential energy surface were combined with RRKM calculations to predict a rate coefficient of 6.2x10-14 cm3 molecule-1 s-1 at 35K, consistent with the experimental results. The presence of a significant barrier, 18 kJ mol-1, for the formation of formamide as a product, means that only the H-abstraction channel producing NH3 + CHO, in which the transfer of an H-atom can occur by quantum mechanical tunnelling through a 23 kJ mol-1 barrier, is open at low temperatures. These results are in contrast with a recent theoretical study which suggested that the reaction could proceed without a barrier and was therefore a viable route to gas-phase formamide formation. The calculated rate coefficients were used in an astrochemical model which demonstrated that this reaction produces only negligible amounts of gas-phase formamide under interstellar and circumstellar conditions. The reaction of NH2 with CH2O is therefore not an important source of formamide at low temperatures in interstellar environments.Comment: Manuscript, 14 pages, 4 figures. Supporting Information, 8 pages, 2 figures. Accepted for publication in The Astrophysical Journal Letter
    corecore