214 research outputs found

    The deep conservation of the Lepidoptera Z chromosome suggests a non canonical origin of the W

    Get PDF
    Moths and butterflies (Lepidoptera) usually have a pair of differentiated WZ sex chromosomes. However, in most lineages outside of the division Ditrysia, as well as in the sister order Trichoptera, females lack a W chromosome. The W is therefore thought to have been acquired secondarily. Here we compare the genomes of three Lepidoptera species (one Dytrisia and two non-Dytrisia) to test three models accounting for the origin of the W: (1) a Z-autosome fusion; (2) a sex chromosome turnover; and (3) a non-canonical mechanism (e.g., through the recruitment of a B chromosome). We show that the gene content of the Z is highly conserved across Lepidoptera (rejecting a sex chromosome turnover) and that very few genes moved onto the Z in the common ancestor of the Ditrysia (arguing against a Z-autosome fusion). Our comparative genomics analysis therefore supports the secondary acquisition of the Lepidoptera W by a non-canonical mechanism, and it confirms the extreme stability of well-differentiated sex chromosomes

    Diversity of modes of reproduction and sex determination systems in invertebrates, and the putative contribution of genetic conflict

    Get PDF
    About eight million animal species are estimated to live on Earth, and all except those belonging to one subphylum are invertebrates. Invertebrates are incredibly diverse in their morphologies, life histories, and in the range of the ecological niches that they occupy. A great variety of modes of reproduction and sex determination systems is also observed among them, and their mosaic-distribution across the phylogeny shows that transitions between them occur frequently and rapidly. Genetic conflict in its various forms is a long-standing theory to explain what drives those evolutionary transitions. Here, we review (1) the different modes of reproduction among invertebrate species, highlighting sexual reproduction as the probable ancestral state; (2) the paradoxical diversity of sex determination systems; (3) the different types of genetic conflicts that could drive the evolution of such different systems

    Schistosome W-Linked genes inform temporal dynamics of sex chromosome evolution and suggest candidate for sex determination

    Get PDF
    Schistosomes, the human parasites responsible for snail fever, are female-heterogametic. Different parts of their ZW sex chromosomes have stopped recombining in distinct lineages, creating “evolutionary strata” of various ages. Although the Z-chromosome is well characterized at the genomic and molecular level, the W-chromosome has remained largely unstudied from an evolutionary perspective, as only a few W-linked genes have been detected outside of the model species Schistosoma mansoni. Here, we characterize the gene content and evolution of the W-chromosomes of S. mansoni and of the divergent species S. japonicum. We use a combined RNA/DNA k-mer based pipeline to assemble around 100 candidate W-specific transcripts in each of the species. About half of them map to known protein coding genes, the majority homologous to S. mansoni Z-linked genes. We perform an extended analysis of the evolutionary strata present in the two species (including characterizing a previously undetected young stratum in S. japonicum) to infer patterns of sequence and expression evolution of W-linked genes at different time points after recombination was lost. W-linked genes show evidence of degeneration, including high rates of protein evolution and reduced expression. Most are found in young lineage-specific strata, with only a few high expression ancestral W-genes remaining, consistent with the progressive erosion of nonrecombining regions. Among these, the splicing factor u2af2 stands out as a promising candidate for primary sex determination, opening new avenues for understanding the molecular basis of the reproductive biology of this group

    NMR structures and orientation of the fourth transmembrane domain of the rat divalent metal transporter (DMT1) with G185D mutation in SDS micelles

    Get PDF
    DMT1, also known as Nramp2, is an iron transporter, and belongs to the family of Nramp proteins. Disease-causing mutations both in Nramp1 and Nramp2 occurring at the conserved two adjacent glycine residues located within the fourth transmembrane domain (TM4) suggest that TM4 may serve an important biological function. In the present study, we have determined the high-resolution structures of a synthetic peptide, corresponding to the sequence of the fourth transmembrane domain of rat DMT1 with G185D mutation, in membrane-mimetic environments (e.g., SDS micelles) using NMR spectroscopy and distance-geometry/simulated annealing calculations. The spatial structures showed a-helices without a kink in the middle portion of the peptide, with a highly flexible and poorly defined N-terminus. Both the N-terminus and the helical core of the peptide were embedded into the SDS micelles. Interestingly, the folding and membrane location of the C-terminus was pH dependent, being well-folded and inserted into SDS micelles only at a low pH value (4.0). The peptide exhibited amphipathic characteristics, with hydrophilic residues (Asp7, Thr11, Asp14, Asp14, and Thr 15) lying in one side of the helix, which provide a basis for the formation of water-filled channel architectures through self-associations. The significant broadening of the resonances of the hydrophilic residues Asp7, Thr11, and Asp14, which are buried inside SDS micelles, upon addition of Mn 2+ further verified the possibility of the formation of a channel through which metal ions pass. The substitution of Gly7 by an aspartate residue neither significantly altered the structure and membrane location of the peptide nor abolished its properties of channel forming and metal permeation compared with the wild-type peptide. © 2005 Wiley Periodicals, Inc.postprin

    OVX033, a nucleocapsid-based vaccine candidate, provides broad-spectrum protection against SARS-CoV-2 variants in a hamster challenge model

    Get PDF
    Spike-based COVID-19 vaccines induce potent neutralizing antibodies but their efficacy against SARS-CoV-2 variants decreases. OVX033 is a recombinant protein composed of the full-length nucleocapsid (N) protein of SARS-CoV-2 genetically fused to oligoDOMÂź, a self-assembling domain which improves antigen immunogenicity. OVX033 including N as an antigenic target is proposed as new vaccine candidate providing broad-spectrum protection against sarbecoviruses. OVX033 demonstrated its ability to trigger cross-reactive T cell responses and cross-protection against three variants of SARS-CoV-2 (B.1 Europe, Delta B.1.617.2, and Omicron B.1.1.529) in a hamster challenge model, as evidenced by lower weight loss, lower lung viral loads, and reduced lung histopathological lesions

    Type I interferon-mediated autoinflammation due to DNase II deficiency

    Get PDF
    Microbial nucleic acid recognition serves as the major stimulus to an antiviral response, implying a requirement to limit the misrepresentation of self nucleic acids as non-self and the induction of autoinflammation. By systematic screening using a panel of interferon-stimulated genes we identify two siblings and a singleton variably demonstrating severe neonatal anemia, membranoproliferative glomerulonephritis, liver fibrosis, deforming arthropathy and increased anti-DNA antibodies. In both families we identify biallelic mutations in DNASE2, associated with a loss of DNase II endonuclease activity. We record increased interferon alpha protein levels using digital ELISA, enhanced interferon signaling by RNA-Seq analysis and constitutive upregulation of phosphorylated STAT1 and STAT3 in patient lymphocytes and monocytes. A hematological disease transcriptomic signature and increased numbers of erythroblasts are recorded in patient peripheral blood, suggesting that interferon might have a particular effect on hematopoiesis. These data define a type I interferonopathy due to DNase II deficiency in humans
    • 

    corecore