11 research outputs found
Wolbachia Mediate Variation of Host Immunocompetence
BACKGROUND: After decades during which endosymbionts were considered as silent in their hosts, in particular concerning the immune system, recent studies have revealed the contrary. In the present paper, we addressed the effect of Wolbachia, the most prevalent endosymbiont in arthropods, on host immunocompetence. To this end, we chose the A. vulgare-Wolbachia symbiosis as a model system because it leads to compare consequences of two Wolbachia strains (wVulC and wVulM) on hosts from the same population. Moreover, A. vulgare is the only host-species in which Wolbachia have been directly observed within haemocytes which are responsible for both humoral and cellular immune responses. METHODOLOGY/PRINCIPAL FINDINGS: We sampled gravid females from the same population that were either asymbiotic, infected with wVulC, or infected with wVulM. The offspring from these females were tested and it was revealed that individuals harbouring wVulC exhibited: (i) lower haemocyte densities, (ii) more intense septicaemia in their haemolymph and (iii) a reduced lifespan as compared to individuals habouring wVulM or asymbiotic ones. Therefore, individuals in this population of A. vulgare appeared to suffer more from wVulC than from wVulM. Symbiotic titer and location in the haemocytes did not differ for the two Wolbachia strains showing that these two parameters were not responsible for differences observed in their extended phenotypes in A. vulgare. CONCLUSION/SIGNIFICANCE: The two Wolbachia strains infecting A. vulgare in the same population induced variation in immunocompetence and survival of their hosts. Such variation should highly influence the dynamics of this host-symbiont system. We propose in accordance with previous population genetic works, that wVulM is a local strain that has attenuated its virulence through a long term adaptation process towards local A. vulgare genotypes whereas wVulC, which is a widespread and invasive strain, is not locally adapted
BIOFRAG: A new database for analysing BIOdiversity responses to forest FRAGmentation
Habitat fragmentation studies are producing inconsistent and complex results across which it is nearly impossible to synthesise. Consistent analytical techniques can be applied to primary datasets, if stored in a flexible database that allows simple data retrieval for subsequent analyses. Method: We developed a relational database linking data collected in the field to taxonomic nomenclature, spatial and temporal plot attributes and further environmental variables (e.g. information on biogeographic region. Typical field assessments include measures of biological variables (e.g. presence, abundance, ground cover) of one species or a set of species linked to a set of plots in fragments of a forested landscape. Conclusion: The database currently holds records of 5792 unique species sampled in 52 landscapes in six of eight biogeographic regions: mammals 173, birds 1101, herpetofauna 284, insects 2317, other arthropods: 48, plants 1804, snails 65. Most species are found in one or two landscapes, but some are found in four. Using the huge amount of primary data on biodiversity response to fragmentation becomes increasingly important as anthropogenic pressures from high population growth and land demands are increasing. This database can be queried to extract data for subsequent analyses of the biological response to forest fragmentation with new metrics that can integrate across the components of fragmented landscapes. Meta-analyses of findings based on consistent methods and metrics will be able to generalise over studies allowing inter-comparisons for unified answers. The database can thus help researchers in providing findings for analyses of trade-offs between land use benefits and impacts on biodiversity and to track performance of management for biodiversity conservation in human-modified landscapes.Fil: Pfeifer, Marion. Imperial College London; Reino UnidoFil: Lefebvre, Veronique. Imperial College London; Reino UnidoFil: Gardner, Toby A.. Stockholm Environment Institute; SueciaFil: Arroyo Rodríguez, Víctor. Universidad Nacional Autónoma de México; MéxicoFil: Baeten, Lander. University of Ghent; BélgicaFil: Banks Leite, Cristina. Imperial College London; Reino UnidoFil: Barlow, Jos. Lancaster University; Reino UnidoFil: Betts, Matthew G.. State University of Oregon; Estados UnidosFil: Brunet, Joerg. Swedish University of Agricultural Sciences; SueciaFil: Cerezo Blandón, Alexis Mauricio. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; ArgentinaFil: Cisneros, Laura M.. University of Connecticut; Estados UnidosFil: Collard, Stuart. Nature Conservation Society of South Australia; AustraliaFil: D´Cruze, Neil. The World Society for the Protection of Animals; Reino UnidoFil: Da Silva Motta, Catarina. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Duguay, Stephanie. Carleton University; CanadáFil: Eggermont, Hilde. University of Ghent; BélgicaFil: Eigenbrod, Félix. University of Southampton; Reino UnidoFil: Hadley, Adam S.. State University of Oregon; Estados UnidosFil: Hanson, Thor R.. No especifíca;Fil: Hawes, Joseph E.. University of East Anglia; Reino UnidoFil: Heartsill Scalley, Tamara. United State Department of Agriculture. Forestry Service; Puerto RicoFil: Klingbeil, Brian T.. University of Connecticut; Estados UnidosFil: Kolb, Annette. Universitat Bremen; AlemaniaFil: Kormann, Urs. Universität Göttingen; AlemaniaFil: Kumar, Sunil. State University of Colorado - Fort Collins; Estados UnidosFil: Lachat, Thibault. Swiss Federal Institute for Forest; SuizaFil: Lakeman Fraser, Poppy. Imperial College London; Reino UnidoFil: Lantschner, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; ArgentinaFil: Laurance, William F.. James Cook University; AustraliaFil: Leal, Inara R.. Universidade Federal de Pernambuco; BrasilFil: Lens, Luc. University of Ghent; BélgicaFil: Marsh, Charles J.. University of Leeds; Reino UnidoFil: Medina Rangel, Guido F.. Universidad Nacional de Colombia; ColombiaFil: Melles, Stephanie. University of Toronto; CanadáFil: Mezger, Dirk. Field Museum of Natural History; Estados UnidosFil: Oldekop, Johan A.. University of Sheffield; Reino UnidoFil: Overal , Williams L.. Museu Paraense Emílio Goeldi. Departamento de Entomologia; BrasilFil: Owen, Charlotte. Imperial College London; Reino UnidoFil: Peres, Carlos A.. University of East Anglia; Reino UnidoFil: Phalan, Ben. University of Southampton; Reino UnidoFil: Pidgeon, Anna Michle. University of Wisconsin; Estados UnidosFil: Pilia, Oriana. Imperial College London; Reino UnidoFil: Possingham, Hugh P.. Imperial College London; Reino Unido. The University Of Queensland; AustraliaFil: Possingham, Max L.. No especifíca;Fil: Raheem, Dinarzarde C.. Royal Belgian Institute of Natural Sciences; Bélgica. Natural History Museum; Reino UnidoFil: Ribeiro, Danilo B.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Ribeiro Neto, Jose D.. Universidade Federal de Pernambuco; BrasilFil: Robinson, Douglas W.. State University of Oregon; Estados UnidosFil: Robinson, Richard. Manjimup Research Centre; AustraliaFil: Rytwinski, Trina. Carleton University; CanadáFil: Scherber, Christoph. Universität Göttingen; AlemaniaFil: Slade, Eleanor M.. University of Oxford; Reino UnidoFil: Somarriba, Eduardo. Centro Agronómico Tropical de Investigación y Enseñanza; Costa RicaFil: Stouffer, Philip C.. State University of Louisiana; Estados UnidosFil: Struebig, Matthew J.. University of Kent; Reino UnidoFil: Tylianakis, Jason M.. University College London; Estados Unidos. Imperial College London; Reino UnidoFil: Teja, Tscharntke. Universität Göttingen; AlemaniaFil: Tyre, Andrew J.. Universidad de Nebraska - Lincoln; Estados UnidosFil: Urbina Cardona, Jose N.. Pontificia Universidad Javeriana; ColombiaFil: Vasconcelos, Heraldo L.. Universidade Federal de Uberlandia; BrasilFil: Wearn, Oliver. Imperial College London; Reino Unido. The Zoological Society of London; Reino UnidoFil: Wells, Konstans. University of Adelaide; AustraliaFil: Willig, Michael R.. University of Connecticut; Estados UnidosFil: Wood, Eric. University of Wisconsin; Estados UnidosFil: Young, Richard P.. Durrell Wildlife Conservation Trust; Reino UnidoFil: Bradley, Andrew V.. Imperial College London; Reino UnidoFil: Ewers, Robert M.. Imperial College London; Reino Unid
Recommended from our members
BIOFRAG – a new database for analyzing BIOdiversity responses to forest FRAGmentation
Habitat fragmentation studies have produced complex results that are challenging
to synthesize. Inconsistencies among studies may result from variation in
the choice of landscape metrics and response variables, which is often compounded
by a lack of key statistical or methodological information. Collating
primary datasets on biodiversity responses to fragmentation in a consistent and
flexible database permits simple data retrieval for subsequent analyses. We present
a relational database that links such field data to taxonomic nomenclature,
spatial and temporal plot attributes, and environmental characteristics. Field
assessments include measurements of the response(s) (e.g., presence, abundance,
ground cover) of one or more species linked to plots in fragments
within a partially forested landscape. The database currently holds 9830 unique
species recorded in plots of 58 unique landscapes in six of eight realms: mammals
315, birds 1286, herptiles 460, insects 4521, spiders 204, other arthropods
85, gastropods 70, annelids 8, platyhelminthes 4, Onychophora 2, vascular
plants 2112, nonvascular plants and lichens 320, and fungi 449. Three landscapes
were sampled as long-term time series (>10 years). Seven hundred and
eleven species are found in two or more landscapes. Consolidating the substantial
amount of primary data available on biodiversity responses to fragmentation
in the context of land-use change and natural disturbances is an essential
part of understanding the effects of increasing anthropogenic pressures on land.
The consistent format of this database facilitates testing of generalizations concerning
biologic responses to fragmentation across diverse systems and taxa. It
also allows the re-examination of existing datasets with alternative landscape
metrics and robust statistical methods, for example, helping to address pseudo-replication
problems. The database can thus help researchers in producing
broad syntheses of the effects of land use. The database is dynamic and inclusive,
and contributions from individual and large-scale data-collection efforts
are welcome.Keywords: Species turnover,
Data sharing,
Database,
Global change,
Landscape metrics,
Edge effects,
Forest fragmentation,
Matrix contrast,
Bioinformatic
Effect of <i>Wolbachia</i> on host survival.
<p>Comparison of survival plots between A females, C females and M females during 7 months revealed that C females survived significantly less than A females and M females.</p
Effect of <i>Wolbachia</i> on CFUs obtained from haemolymph samples.
<p>Haemolymph samples from <i>A. vulgare</i> females infected or not by <i>Wolbachia</i> were streaked onto several agar media (CNA, MHA and Chocolate). On CNA [selective medium for Gram (+) bacteria], the mean number of CFUs obtained for haemolymph samples from C females was significantly higher than in A females or M females.</p
Titer of each <i>Wolbachia</i> strains in <i>A. vulgare</i> ovaries.
<p>Comparative analysis of the titer of <i>Wolbachia</i> in ovaries between C females and M females was performed using qPCR of the <i>wsp</i> gene. The two strains of <i>Wolbachia</i> exhibited a similar titer (∼7,640×10<sup>6</sup> bacteria per µg total DNA; ANOVA, <i>F</i><sub>1,35</sub> = 1.92, <i>p</i> = 0.17).</p
Haemocyte from an <i>A. vulgare</i> female infected with <i>w</i>VulC observed by transmission electronic microscopy.
<p>Haemocytes were included in agar gel and cut. Thick sections (0.5 µm) were stained and observed using a transmission electronic microscope.<i>Wolbachia</i> (notated <i>w</i> on the photography) cells were observed by transmission electronic microscopy in haemocytes of all C and M females tested.</p
Effect of <i>Wolbachia</i> on haemocyte density.
<p>Global comparison of haemocyte densities in haemolymph of <i>A. vulgare</i> females infected or not by <i>Wolbachia</i> revealed that A females exhibited significantly higher haemocyte densities than C females, M females and injC females.</p