93 research outputs found
Through Thick and Thin: Kinematic and Chemical Components in the Solar Neighbourhood
We search for the existence of chemically-distinct stellar components in the
solar neighbourhood using published data. Extending earlier work, we show that
when the abundances of Fe, alpha elements, and the r-process element Eu are
considered, stars separate neatly into two groups that delineate the
traditional thin and thick disk of the Milky Way. The group akin to the thin
disk is traced by stars with [Fe/H]>-0.7 and alpha/Fe<0.2. The thick disk-like
group overlaps the thin disk in [Fe/H] but has higher abundances of alpha
elements and Eu. Stars in the range -1.5<[Fe/H]<-0.7 with low [alpha/Fe]
ratios, however, seem to belong to a separate, dynamically-cold, non-rotating
component that we associate with tidal debris. The kinematically-hot stellar
halo dominates the sample for [Fe/H]<-1.5. These results suggest that it may be
possible to define the main dynamical components of the solar neighbourhood
using only their chemistry, an approach with a number of interesting
consequences. The kinematics of thin disk stars is then independent of
metallicity: their average rotation speed remains roughly constant in the range
-0.7<[Fe/H]<+0.4, a result that argues against radial migration having played a
substantial role in the evolution of the thin disk. The velocity dispersion of
stars assigned to the thin disk is also independent of [Fe/H], implying that
the familiar increase in velocity dispersion with decreasing metallicity is the
result of the increased prevalence of the thick disk at lower metallicities,
rather than of the sustained operation of a dynamical heating mechanism. The
substantial overlap in [Fe/H] and, probably, stellar age, of the various
components might affect other reported trends in the properties of stars in the
solar neighbourhood.Comment: 8 pages, 5 figures, some clarifications after referee report.
Conclusions unchange
Descripción de tres nuevas especies de ranas del género Pristimantis (Anura: Terrarana: Strabomantidae) de los bosques nublados del Distrito Metropolitano de Quito, Ecuador
We describe three new species of frogs Pristimantis from the Distrito Metropolitano de Quito based on material collected by expedition of the Museo Ecuatoriano de Ciencias Naturales. The new species are assigned to the P unistrigatus, P devillei and P myersi species-groups, and can be distinguished easily from similar species by external morphology and distinctive coloration patterns. The three new species were discovered in the extensive and unexplored forests on the northern and southwestern slopes of the Pichincha volcano, which preserves an endemic and still poorly-known fauna.Describimos tres nuevas especies de ranas Pristimantis del Distrito Metropolitano de Quito basados en material colectado durante experidiciones del Museo Ecuatoriano Ciencias Naturales. Las nuevas especies son asignadas a los grupos-de-especies P unistrigatus, P devillei y P myersi, y pueden distinguirse fácilmente de otras especies similares por su morfología externa y patrones de coloración distintivos. Las tres nuevas especies fueron descubiertas en los extensos e inexplorados bosques en las estribaciones norte y suroccidentales del volcán Pichincha, que preservan una fauna endémica y todavía poco conocida
Galaxy-Induced Transformation of Dark Matter Halos
We use N-body/gasdynamical LambdaCDM cosmological simulations to examine the
effect of the assembly of a central galaxy on the shape and mass profile of its
dark halo. Two series of simulations are compared; one that follows only the
evolution of the dark matter component and a second one where a baryonic
component is added. These simulations include radiative cooling but neglect
star formation and feedback, leading most baryons to collect at the halo center
in a disk which is too small and too massive when compared with typical spiral.
This unrealistic model allows us, nevertheless, to gauge the maximum effect
that galaxies may have in transforming their dark halos. We find that the shape
of the halo becomes more axisymmetric: halos are transformed from triaxial into
essentially oblate systems, with well-aligned isopotential contours of roughly
constant flattening (c/a ~ 0.85). Halos always contract as a result of galaxy
assembly, but the effect is substantially less pronounced than predicted by the
"adiabatic contraction" hypothesis. The reduced contraction helps to reconcile
LambdaCDM halos with constraints on the dark matter content inside the solar
circle and should alleviate the long-standing difficulty of matching
simultaneously the scaling properties of galaxy disks and the luminosity
function. The halo contraction is also less pronounced than found in earlier
simulations, a disagreement that suggests that halo contraction is not solely a
function of the initial and final distribution of baryons. Not only how much
baryonic mass has been deposited at the center of a halo matters, but also the
mode of its deposition. It might prove impossible to predict the halo response
without a detailed understanding of a galaxy's assembly history. (Abriged)Comment: 11 pages and 9 figure
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey
Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020
La Red Internacional de Inventarios Forestales (BIOTREE-NET) en Mesoamérica: avances, retos y perspectivas futuras
Conservation efforts in Neotropical regions are often hindered by lack of data, since for many species there is a vacuum of information, and many species have not even been described yet. The International Network of Forest Inventory Plots (BIOTREE-NET) gathers and facilitates access to tree data from forest inventory plots in Mesoamerica, while encouraging data exchange between researchers, managers and conservationists. The information is organised and standardised into a single database that includes spatially explicit data. This article describes the scope and objectives of the network, its progress, and the challenges and future perspectives. The database includes above 50000 tree records of over 5000 species from more than 2000 plots distributed from southern Mexico through to Panama. Information is heterogeneous, both in nature and shape, as well as in the geographical coverage of inventory plots. The database has a relational structure, with 12 inter-connected tables that include information about plots, species names, dbh, and functional attributes of trees. A new system that corrects typographical errors and achieves taxonomic and nomenclatural standardization was developed using The Plant List (http://theplantlist.org/) as reference. Species distribution models have been computed for around 1700 species using different methods, and they will be publicly accessible through the web site in the future (http://portal.biotreenet.com). Although BIOTREE-NET has contributed to the development of improved species distribution models, its main potential lies, in our opinion, in studies at the community level. Finally, we emphasise the need to expand the network and encourage researchers willing to share data and to join the network and contribute to the generation of further knowledge about forest biodiversity in Neotropical regions
- …