41 research outputs found
Management of non-native tree species in forests of the Alpine space
This guide was prepared within the framework of the project ALPTREES (code ASP791), which is co-funded by the European Commission through the INTERREG Alpine Space financial mechanism. The INTERREG Alpine Space programme is a European transnational cooperation programme for the Alpine region. It provides a framework for facilitating cooperation between key economic, social, and environmental players in seven Alpine countries, as well as between various institutional levels. The programme is financed through the European Regional Development Fund (ERDF) as well as through national public and private co-funding in the Partner States
Expression of Cellulosome Components and Type IV Pili within the Extracellular Proteome of Ruminococcus flavefaciens 007
Funding: The Rowett Institute receives funding from SG-RESAS (Scottish Government Rural and Environmental Science and Analysis Service). Visit of M.V. was supported by research grants from FEMS and Slovene human resources development and scholarship funds. Parts of this work were funded by grants from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel – BSF Energy Research grant to E.A.B. and B.A.W. and Regular BSF Research grants to R.L. and B.A.W. – and by the Israel Science Foundation (grant nos 966/09 and 159/07 291/08). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Transnational strategy on the sustainable management and responsible use of non-native trees in the Alpine Space
Abstract Non-native tree species – defined as those species intentionally or unintentionally introduced by humans – have long been a part of the Alpine Space, providing numerous benefits, but also posing a potential threat to native biodiversity and related ecosystem services. Compared to the urban space where non-native trees comprise most tree species, the number of non-native trees in forests and plantations is relatively low. To evaluate potential risks and benefits of non-native trees in the Alpine Space, a transnational strategy for the responsible use and management of non-native trees is needed. The goals of the strategy are to tailor management practices for a sustainable and responsible use or admixture of non-native trees, to reduce the risks connected with the invasive potential of some non-native tree species, to help forests and urban areas to adapt to climate change, and to improve coordination and cooperation regarding best practices between different regions of the Alpine Space. A proposal was developed in a four-step process including expert-based assessment, stakeholder mapping, an extensive data review, and a public consultation. For implementing the strategy fully, strong collaboration among diverse stakeholders is anticipated and robust governance and an adequate long-term and fair funding scheme is needed
Notes on phytosociology of Juniperus excelsa in Macedonia (southern Balkan Peninsula)
Juniperus excelsa is an East Mediterranean species found also in marginal, sub-mediterranean regions of the southern part of the Balkan Peninsula. It prefers shallow soils in the warmest habitats of the zone of thermophilous deciduous forests. In the past the rank of alliance and the name of Juniperion excelsae-foetidissimae have been suggested for the vegetation dominated by Juniperus excelsa in the Balkan Peninsula. In this paper we present the valid description of the alliance in accordance with the International Code of Phytosociological Nomenclature. The validation of the Juniperion excelsae-foetidissimae required description of a new association - the Querco trojanae-Juniperetum excelsae. The Juniperion excelsae-foetidissimae is classified within the order of Quercetalia pubescentis Klika 1933 (the Quercetea pubescentis Doing-Kraft ex Scamoni et Passarge 1959)
Transnational strategy on the sustainable management and responsible use of non-native trees in the Alpine Space
Non-native tree species – defined as those species intentionally or unintentionally introduced by humans – have longbeen a part of the Alpine Space, providing numerous benefits, but also posing a potential threat to native biodiversityand related ecosystem services. Compared to the urban space where non-native trees comprise most tree species,the number of non-native trees in forests and plantations is relatively low. To evaluate potential risks and benefits ofnon-native trees in the Alpine Space, a transnational strategy for the responsible use and management of non-nativetrees is needed. The goals of the strategy are to tailor management practices for a sustainable and responsible useor admixture of non-native trees, to reduce the risks connected with the invasive potential of some non-native treespecies, to help forests and urban areas to adapt to climate change, and to improve coordination and cooperationregarding best practices between different regions of the Alpine Space. A proposal was developed in a four-stepprocess including expert-based assessment, stakeholder mapping, an extensive data review, and a public consulta-tion. For implementing the strategy fully, strong collaboration among diverse stakeholders is anticipated and robustgovernance and an adequate long-term and fair funding scheme is needed
EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats
Aim: The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation‐plot records to the habitats of the EUNIS system, use it to classify a European vegetation‐plot database, and compile statistically‐derived characteristic species combinations and distribution maps for these habitats. Location: Europe. Methods: We developed the classification expert system EUNIS‐ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set‐theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species‐to‐habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results: Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man‐made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions: EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS‐ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment