111 research outputs found

    Atmospheric influences on the anomalous 2016 Antarctic sea ice decay

    Get PDF
    In contrast to the Arctic, where total sea ice extent (SIE) has been decreasing for the last three decades, Antarctic SIE has shown a small, but significant, increase during the same time period. However, in 2016, an unusually early onset of the melt season was observed; the maximum Antarctic SIE was already reached as early as August rather than the end of September, and was followed by a rapid decrease. The decay was particularly strong in November, when Antarctic SIE exhibited a negative anomaly (compared to the 1979–2015 average) of approximately 2 million km2. ECMWF Interim reanalysis data showed that the early onset of the melt and the rapid decrease in sea ice area (SIA) and SIE were associated with atmospheric flow patterns related to a positive zonal wave number three (ZW3) index, i.e., synoptic situations leading to strong meridional flow and anomalously strong southward heat advection in the regions of strongest sea ice decline. A persistently positive ZW3 index from May to August suggests that SIE decrease was preconditioned by SIA decrease. In particular, in the first third of November northerly flow conditions in the Weddell Sea and the Western Pacific triggered accelerated sea ice decay, which was continued in the following weeks due to positive feedback effects, leading to the unusually low November SIE. In 2016, the monthly mean Southern Annular Mode (SAM) index reached its second lowest November value since the beginning of the satellite observations. A better spatial and temporal coverage of reliable ice thickness data is needed to assess the change in ice mass rather than ice area

    Safe system demonstration project in a remote Aboriginal and Torres Strait Islander community

    Get PDF
    This paper reports on key findings and recommendations of the first known application of a comprehensive Safe System audit in a remote Aboriginal and Torres Strait Islander community; commissioned by the Indigenous Road Safety Working Group with funding from Austroads. The audit was conducted in Bidyadanga WA in collaboration with the Bidyadanga Community Council during June-August 2010, including: review of policy, management and police records; physical observation of roads, speeds and vehicles; and interviews with community members and local stakeholders including regarding road user issues and vehicle access. Bidyadanga was found to have high quality roads and safe speeds within residential areas, with limited need for upgrades and new work; however, several issues were identified on roads to access the nearest town, including a high crash “blackspot” location. Access to safe vehicles was limited. Unlicensed driving, lack of child restraints, drink driving and fatigue were key road user concerns. Needs for across-government improvements in policy and management were identified. Cost effective actions were identified. This project demonstrated that application of the Safe System was feasible in a remote Aboriginal community, while lessons learned can be adapted and applied nationally to improve Aboriginal road safety

    Antarctic Sea Ice Area in CMIP6

    Get PDF
    Fully coupled climate models have long shown a wide range of Antarctic sea ice states and evolution over the satellite era. Here, we present a high‐level evaluation of Antarctic sea ice in 40 models from the most recent phase of the Coupled Model Intercomparison Project (CMIP6). Many models capture key characteristics of the mean seasonal cycle of sea ice area (SIA), but some simulate implausible historical mean states compared to satellite observations, leading to large intermodel spread. Summer SIA is consistently biased low across the ensemble. Compared to the previous model generation (CMIP5), the intermodel spread in winter and summer SIA has reduced, and the regional distribution of sea ice concentration has improved. Over 1979–2018, many models simulate strong negative trends in SIA concurrently with stronger‐than‐observed trends in global mean surface temperature (GMST). By the end of the 21st century, models project clear differences in sea ice between forcing scenarios

    Global Drivers on Southern Ocean Ecosystems: Changing Physical Environments and Anthropogenic Pressures in an Earth System

    Get PDF
    Copyright © 2020 Morley, Abele, Barnes, Cårdenas, Cotté, Gutt, Henley, Höfer, Hughes, Martin, Moffat, Raphael, Stammerjohn, Suckling, Tulloch, Waller and Constable. The manuscript assesses the current and expected future global drivers of Southern Ocean (SO) ecosystems. Atmospheric ozone depletion over the Antarctic since the 1970s, has been a key driver, resulting in springtime cooling of the stratosphere and intensification of the polar vortex, increasing the frequency of positive phases of the Southern Annular Mode (SAM). This increases warm air-flow over the East Pacific sector (Western Antarctic Peninsula) and cold air flow over the West Pacific sector. SAM as well as El Niño Southern Oscillation events also affect the Amundsen Sea Low leading to either positive or negative sea ice anomalies in the west and east Pacific sectors, respectively. The strengthening of westerly winds is also linked to shoaling of deep warmer water onto the continental shelves, particularly in the East Pacific and Atlantic sectors. Air and ocean warming has led to changes in the cryosphere, with glacial and ice sheet melting in both sectors, opening up new ice free areas to biological productivity, but increasing seafloor disturbance by icebergs. The increased melting is correlated with a salinity decrease particularly in the surface 100 m. Such processes could increase the availability of iron, which is currently limiting primary production over much of the SO. Increasing CO2 is one of the most important SO anthropogenic drivers and is likely to affect marine ecosystems in the coming decades. While levels of many pollutants are lower than elsewhere, persistent organic pollutants (POPs) and plastics have been detected in the SO, with concentrations likely enhanced by migratory species. With increased marine traffic and weakening of ocean barriers the risk of the establishment of non-indigenous species is increased. The continued recovery of the ozone hole creates uncertainty over the reversal in sea ice trends, especially in the light of the abrupt transition from record high to record low Antarctic sea ice extent since spring 2016. The current rate of change in physical and anthropogenic drivers is certain to impact the Marine Ecosystem Assessment of the Southern Ocean (MEASO) region in the near future and will have a wide range of impacts across the marine ecosystem

    Recent applications and potential of near-term (interannual to decadal) climate predictions

    Get PDF
    Following efforts from leading centres for climate forecasting, sustained routine operational near-term climate predictions (NTCP) are now produced that bridge the gap between seasonal forecasts and climate change projections offering the prospect of seamless climate services. Though NTCP is a new area of climate science and active research is taking place to increase understanding of the processes and mechanisms required to produce skillful predictions, this significant technical achievement combines advances in initialisation with ensemble prediction of future climate up to a decade ahead. With a growing NTCP database, the predictability of the evolving externally-forced and internally-generated components of the climate system can now be quantified. Decision-makers in key sectors of the economy can now begin to assess the utility of these products for informing climate risk and for planning adaptation and resilience strategies up to a decade into the future. Here, case studies are presented from finance and economics, water management, agriculture and fisheries management demonstrating the emerging utility and potential of operational NTCP to inform strategic planning across a broad range of applications in key sectors of the global economy

    Resource-aware Research on Universe and Matter: Call-to-Action in Digital Transformation

    Full text link
    Given the urgency to reduce fossil fuel energy production to make climate tipping points less likely, we call for resource-aware knowledge gain in the research areas on Universe and Matter with emphasis on the digital transformation. A portfolio of measures is described in detail and then summarized according to the timescales required for their implementation. The measures will both contribute to sustainable research and accelerate scientific progress through increased awareness of resource usage. This work is based on a three-days workshop on sustainability in digital transformation held in May 2023.Comment: 20 pages, 2 figures, publication following workshop 'Sustainability in the Digital Transformation of Basic Research on Universe & Matter', 30 May to 2 June 2023, Meinerzhagen, Germany, https://indico.desy.de/event/3748

    Country activities of Global Alliance against Chronic Respiratory Diseases (GARD): focus presentations at the 11th GARD General Meeting, Brussels

    Get PDF
    © Journal of Thoracic Disease. All rights reserved.The Global Alliance against Chronic Respiratory Diseases (GARD) is a voluntary network of national and international organizations, institutions and agencies led by the World Health Organization (WHO), working towards the vision of a world where all people breathe freely (1). GARD is supporting WHO in successfully implementing the WHO’s Global Action Plan for the Prevention and Control of Noncommunicable Diseases (NCDs) 2013–2020. The GARD report on GARD activities is published on a regular basis. Collaboration among GARD countries is critical for sharing experiences and providing technical assistance to developing countries based on each country’s needs (2). The annual GARD meeting is a unique opportunity for assembling all of the GARD participants from developed and developing countries: European countries, North and South American Countries, China, Vietnam as well as Eastern Mediterranean, and African countries. Coordinator for Management of NCDs in the WHO Department for Management of Noncommunicable Diseases, Disability, Violence and Injury Prevention (Cherian Varghese) is present at this meeting. The annual meeting of GARD is a forum for exchanging opinions in order to improve care for chronic respiratory diseases (CRDs) and to achieve the GARD goal—a world where all people breathe freely. Experts—in collaboration with WHO—are helping developing countries to achieve their projects regarding teaching, research and programming for CRD. Each year, there is a poster presentation session on country activities. Each participant is able to present his/her country activities that have been achieved since the last meeting. This is followed by discussion. In this paper, we summarize the posters presented during the 11th GARD general meeting. We hope that this will give readers of the GARD section an opportunity to learn for their countries. We can find all posters on the link: https://gard-breathefreely.org/resources-poster/.info:eu-repo/semantics/publishedVersio

    Sustained Antarctic Research: A 21st Century Imperative

    Get PDF
    The view from the south is, more than ever, dominated by ominous signs of change. Antarctica and the Southern Ocean are intrinsic to the Earth system, and their evolution is intertwined with and influences the course of the Anthropocene. In turn, changes in the Antarctic affect and presage humanity's future. Growing understanding is countering popular beliefs that Antarctica is pristine, stable, isolated, and reliably frozen. An aspirational roadmap for Antarctic science has facilitated research since 2014. A renewed commitment to gathering further knowledge will quicken the pace of understanding of Earth systems and beyond. Progress is already evident, such as addressing uncertainties in the causes and pace of ice loss and global sea-level rise. However, much remains to be learned. As an iconic global “commons,” the rapidity of Antarctic change will provoke further political action. Antarctic research is more vital than ever to a sustainable future for this One Earth
    • 

    corecore