164 research outputs found

    Relationship between Plasma Concentrations of Afatinib and the Onset of Diarrhea in Patients with Non-Small Cell Lung Cancer

    Get PDF
    We evaluated the area under the plasma concentration–time curve (AUC) of afatinib required to avoid the onset of grade 2 or higher diarrhea. The C0 and AUC0–24 of afatinib were significant higher in patients with grade 2 diarrhea than in those with grade 0–1 diarrhea. The areas under the receiver operator curves were 0.795 with the highest sensitivity (89%) and specificity (74%) at an AUC0–24 threshold of 823.5 ng h/mL, and 0.754 with the highest sensitivity (89%) and specificity (74%) at a C0 threshold of 28.5 ng/mL. In Kaplan–Meier analysis based on these cut-off AUC0–24 and C0 values, the median time to the incidence of grade 2 diarrhea was 16 days. The predicted AUC0–24 of afatinib from the single point of C6 showed the highest correlation with the measured AUC0–24 (r2 = 0.840); however, a significant correlation between the AUC0–24 and C0 was also observed (r2 = 0.761). C0 could be used as a marker of therapeutic drug monitoring because afatinib C0 was related to AUC0–24. Therefore, afatinib C0 should be monitored on day 8 after beginning therapy, and the daily dose of afatinib should be adjusted as an index with a cut-off value of 28.5 ng/mL

    食餌性リン負荷がラットにおける鉄欠乏性貧血の発症・進展と鉄代謝に及ぼす影響

    Get PDF
    Inorganic phosphate (Pi) plays critical roles in bone metabolism and is an essential component of 2,3-diphosphoglycerate (2,3-DPG). It has been reported that animals fed a low-iron diet modulate Pi metabolism, whereas the effect of dietary Pi on iron metabolism, particularly in iron deficiency anemia (IDA), is not fully understood. In this study, we hypothesized the presence of a link between Pi and iron metabolism and tested the hypothesis by investigating the effects of dietary Pi on iron status and IDA. Wistar rats aged 4 weeks were randomly assigned to 1 of 4 experimental dietary groups: normal iron content (Con Fe) + 0.5% Pi, low-iron (Low Fe) + 0.5% Pi, Con Fe + 1.5% Pi, and Low Fe + 1.5% Pi. Rats fed the 1.5% Pi diet for 14 days, but not for 28 days, maintained their anemia state and plasma erythropoietin concentrations within the reference range, even under conditions of low iron. In addition, plasma concentrations of 2,3-DPG were significantly increased by the 1.5% Pi diets and were positively correlated with plasma Pi concentration (r = 0.779; P < .001). Dietary Pi regulated the messenger RNA expression of iron-regulated genes, including divalent metal transporter 1, duodenal cytochrome B, and hepcidin. Furthermore, iron concentration in liver tissues was increased by the 1.5% Pi in Con Fe diet. These results suggest that dietary Pi supplementation delays the onset of IDA and increases plasma 2,3- DPG concentration, followed by modulation of the expression of iron-regulated genes

    Peroxisome proliferator-activated receptor activity is involved in the osteoblastic differentiation regulated by bone morphogenetic proteins and tumor necrosis factor-α.

    Get PDF
    Recent studies have suggested possible adverse effects of thiazolidinediones on bone metabolism. However, the detailed mechanism by which the activity of PPAR affects bone formation has not been elucidated. Impaired osteoblastic function due to cytokines is critical for the progression of inflammatory bone diseases. In the present study, we investigated the cellular mechanism by which PPAR actions interact with osteoblast differentiation regulated by BMP and TNF-alpha using mouse myoblastic C2C12 cells. BMP-2 and -4 potently induced the expression of various bone differentiation markers including Runx2, osteocalcin, type-1 collagen and alkaline phosphatase (ALP) in C2C12 cells. When administered in combination with a PPAR alpha agonist (fenofibric acid) but not with a PPAR gamma agonist (pioglitazone), BMP-4 enhanced osteoblast differentiation through the activity of PPAR alpha. The osteoblastic changes induced by BMP-4 were readily suppressed by treatment with TNF-alpha. Interestingly, the activities of PPAR alpha and PPAR gamma agonists reversed the suppression by TNF-alpha of osteoblast differentiation induced by BMP-4. Furthermore, TNF-alpha-induced phosphorylation of MAPKs, NF kappa B, I kappa B and Stat pathways was inhibited in the presence of PPAR alpha and PPAR gamma agonists with reducing TNF-alpha receptor expression. In view of the finding that inhibition of SAPK/JNK. Stat and NF kappa B pathways reversed the TNF-alpha suppression of osteoblast differentiation, we conclude that these cascades are functionally involved in the actions of PPARs that antagonize TNF-alpha-induced suppression of osteoblast differentiation. It was further discovered that the PPAR alpha agonist enhanced BMP-4-induced Smad1/5/8 signaling through downregulation of inhibitory Smad6/7 expression, whereas the PPAR gamma agonist impaired this activity by suppressing BMPRII expression. On the other hand, BMPs increased the expression levels of PPAR alpha and PPAR gamma in the process of osteoblast differentiation. Thus, PPAR alpha actions promote BMP-induced osteoblast differentiation, while both activities of PPAR alpha and PPAR gamma suppress TNF-alpha actions. Collectively, our present data establishes that PPAR activities are functionally involved in modulating the interaction between the BMP system and TNF-alpha receptor signaling that is crucial for bone metabolism

    Comparison of energy metabolism in Insulin-Dependent and Non-Insulin-Dependent diabetes mellitus

    Get PDF
    To compare the metabolic consequences of insulin-dependent diabetes mellitus (IDDM) and non-insulin-dependent diabetes mellitus (NIDDM), glycemic control and energy metabolism were evaluated in 18 children displaying IDDM and 19 NIDDM adult patients. With rising concentrations of fasting blood glucose (FBG), hemoglobin A1C and free fatty acid, the percentage of the ratio of resting energy expenditure (REE) to predicted REE expressed as %REE increased and the respiratory quotient (RQ) decreased. The linear regression between RQ and FBG showed the same gradient in IDDM and NIDDM although the RQ in IDDM was always 0.07 lower than that in NIDDM given various FBG concentrations. Those patients whose RQ values were less than 0.7, indicating ketone body production, included 8 (44%) IDDM and 2 (11%) NIDDM patients. These results may explain the relatively greater manifestation of ketoacidosis in IDDM

    Hypercholesterolemia and effects of high cholesterol diet in type IIa sodium-dependent phosphate co-transporter (Npt2a) deficient mice

    Get PDF
    The type IIa sodium-dependent phosphate co-transporter (Npt2a) is important to maintain renal inorganic phosphate (Pi) homeostasis and the plasma Pi levels. It has reported that disorder of Pi metabolism in kidney can be risk factors for cardiovascular disease as well as hypercholesterolemia. However, the relationship between Pi and cholesterol metabolism has not been clarified. The current study investigated the effects of Npt2a gene ablation that is known as hypophosphatemia model on cholesterol metabolism in mice. Npt2a deficient (Npt2a-/-) mice and wild type mice were fed diets with or without 2% cholesterol for 12 days. Plasma lipid and lipoprotein profile analysis revealed that plasma lipid levels (total, LDL and HDL cholesterol) were significantly higher in Npt2a-/- mice than wild type (WT) mice. Interestingly, high cholesterol diet markedly increased plasma levels of total, LDL and HDL cholesterol in WT mice, but not Npt2a-/- mice. On the other hand, there were no differences in body and liver weight, intake and hepatic lipid accumulation between WT and Npt2a-/- mice. These results suggest that ablation of Npt2a gene induces hypercholesterolemia and affects the ability to respond normally to dietary cholesterol
    corecore