<u>MCE-D-11-00220</u>R Revised<u>version</u> Takano and Otsuka et al.

1	Peroxisome proliferator-activated receptor activity is involved in the
2	osteoblastic differentiation regulated by bone morphogenetic proteins
3	and tumor necrosis factor-α.
4	
5	Mariko Takano, †Fumio Otsuka, Yoshinori Matsumoto, Kenichi Inagaki, Masaya
6	Takeda, Eri Nakamura, Naoko Tsukamoto, Tomoko Miyoshi, Ken-ei Sada and
7	Hirofumi Makino
8	
9	Department of Medicine and Clinical Science, Okayama University Graduate School of
10	Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama
11	700-8558, Japan
12	
13	Running title: BMP and PPAR actions in osteoblast differentiation
14	Key words: bone morphogenetic protein (BMP), peroxisome proliferator-activated
15	receptor (PPAR), osteoblast, and tumor necrosis factor- α (TNF- α)
16	
17	Disclosure statement: All authors have nothing to disclose.
18	
19	Correspondence to: †Fumio OTSUKA, M.D., Ph.D.
20	Endocrine Center of Okayama University Hospital,
21	2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan.
22	Phone: +81-86-235-7235, Fax: +81-86-222-5214
23	E-mail: <u>fumiotsu@md.okayama-u.ac.jp</u>
24	
25	Abbreviations:
26 27 28 29 30 31 32 33 34 35	ALK, activin receptor-like kinase ActRII, activin type-II receptor BMP, bone morphogenetic protein; BMPRII, BMP type-II receptor ERK, extracellular signal-regulated kinase MAPK, mitogen-activated protein kinase NF κ B, nuclear factor- κ B I κ B, inhibitory- κ B PPAR, peroxisome proliferator-activated receptor SAPK/JNK, stress-activated protein kinase / c-Jun NH2-terminal kinase TGF- β , transforming growth factor- β

37 TNFR, tumor necrosis factor receptor

1 ABSTRACT 2 3 Recent studies have suggested possible adverse effects of thiazolidinediones 4 on bone metabolism. However, the detailed mechanism by which the activity of PPAR affects bone formation has not been elucidated. Impaired osteoblastic function 5 6 due to cytokines is critical for the progression of inflammatory bone diseases. In the 7 present study we investigated the cellular mechanism by which PPAR actions interact 8 with osteoblast differentiation regulated by BMP and TNF- α using mouse myoblastic 9 C2C12 cells. BMP-2 and -4 potently induced the expression of various bone 10 differentiation markers including Runx2, osteocalcin, type-1 collagen and alkaline phosphatase (ALP) in C2C12 cells. When administered in combination with a PPARa 11 12 agonist (fenofibric acid) but not with a PPARy agonist (pioglitazone), BMP-4 enhanced 13 osteoblast differentiation through the activity of PPAR α . The osteoblastic changes 14 induced by BMP-4 were readily suppressed by treatment with TNF- α . Interestingly, 15 the activities of PPAR α and PPAR γ agonists reversed the suppression by TNF- α of 16 osteoblast differentiation induced by BMP-4. Furthermore, TNF- α -induced

- 2 -

1	phosphorylation of MAPKs, NFkB, IkB and Stat pathways was inhibited in the
2	presence of PPAR α and PPAR γ agonists with reducing TNF- α receptor expression. In
3	view of the finding that inhibition of SAPK/JNK, Stat and NFkB pathways reversed the
4	TNF- α suppression of osteoblast differentiation, we conclude that these cascades are
5	functionally involved in the actions of PPARs that antagonize TNF- α -induced
6	suppression of osteoblast differentiation. It was further discovered that the PPAR α
7	agonist enhanced BMP-4-induced Smad1/5/8 signaling through downregulation of
8	inhibitory Smad6/7 expression, whereas the PPAR γ agonist impaired this activity by
9	suppressing BMPRII expression. On the other hand, BMPs increased the expression
10	levels of PPAR α and PPAR γ in the process of osteoblast differentiation. Thus, PPAR α
11	actions promote BMP-induced osteoblast differentiation, while both activities of
12	PPAR α and PPAR γ suppress TNF- α actions. Collectively, our present data establishes
13	that PPAR activities are functionally involved in modulating the interaction between the
14	BMP system and TNF- α receptor signaling that is crucial for bone metabolism.

1	INTRODUCTION
2	
3	Bone morphogenetic proteins (BMPs), members of the transforming growth
4	factor (TGF)- β superfamily, play pivotal regulatory roles in mesoderm induction and
5	dorso-ventral patterning of developing limb buds and are known to promote
6	differentiation of mesenchymal stem cells into chondrocytes and osteoblasts as well as
7	differentiation of osteoprogenitor cells into osteoblasts (Lieberman et al., 2002).
8	BMPs are also known to have critical roles in governing various aspects of
9	embryological development, including development of the brain, heart, kidney and eyes
10	(Reddi, 1997). In addition to the developmental actions of BMPs, various
11	physiological actions of BMPs in endocrine and vascular tissues have recently been
12	elucidated (Shimasaki et al., 2004; Otsuka, 2010; Otsuka et al., 2011). The biological
13	functions of BMPs are mediated through the Smad signal transduction pathway via
14	specific combinations of the proper BMP receptors (Shimasaki et al., 2004).
15	Osteoblast differentiation is a complex process regulated by various endocrine,
16	paracrine and autocrine factors. Osteoblasts, which arise from mesenchymal stem cell

2TGFs, insulin-like growth factor-I (IGF-I), vascular endothelial growth factor3and steroids (McCarthy et al., 1989; Celeste et al., 1990; Midy and Plou4Hughes et al., 1995; Spelsberg et al., 1999). Once matrix synthesis begins in5osteoblast cells, the cells differentiate and osteoblastic markers, including6phosphatase (ALP), type-I collagen and osteocalcin, are subsequently7Osteoblasts then embed in the extracellular matrix consisting of collagen fibril8matrix is mineralized and extended in collagen fibrils. Deposition and maint9mineralized skeletal elements are further regulated by various growth factors10BMPs and cytokines such as interleukins and tumor necrosis factors (TNFs).11Among the various cytokines, TNF- α receptor signaling plays a precession of the induction of osteoclast differentiation leading13and function in addition to the induction of osteoclast differentiation leading14resorption (Kudo et al., 2002). The effectiveness of blocking TNF- α at15treatment of active rheumatoid arthritis established the clinical significance of16the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001;	1	precursors, undergo differentiation in response to a number of factors, including BMPs,
and steroids (McCarthy et al., 1989; Celeste et al., 1990; Midy and Plou Hughes et al., 1995; Spelsberg et al., 1999). Once matrix synthesis begins in osteoblast cells, the cells differentiate and osteoblastic markers, including phosphatase (ALP), type-I collagen and osteocalcin, are subsequently Osteoblasts then embed in the extracellular matrix consisting of collagen fibril matrix is mineralized and extended in collagen fibrils. Deposition and maint mineralized skeletal elements are further regulated by various growth factors BMPs and cytokines such as interleukins and tumor necrosis factors (TNFs). Among the various cytokines, TNF- α receptor signaling plays a pre role in bone loss in arthritis. TNF- α is also involved in controlling osteoblas and function in addition to the induction of osteoclast differentiation leading resorption (Kudo et al., 2002). The effectiveness of blocking TNF- α a treatment of active rheumatoid arthritis established the clinical significance of the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001;	2	TGFs, insulin-like growth factor-I (IGF-I), vascular endothelial growth factor (VEGF),
4 Hughes et al., 1995; Spelsberg et al., 1999). Once matrix synthesis begins in 5 osteoblast cells, the cells differentiate and osteoblastic markers, including 6 phosphatase (ALP), type-I collagen and osteocalcin, are subsequently 7 Osteoblasts then embed in the extracellular matrix consisting of collagen fibril 8 matrix is mineralized and extended in collagen fibrils. Deposition and maint 9 mineralized skeletal elements are further regulated by various growth factors 10 BMPs and cytokines such as interleukins and tumor necrosis factors (TNFs). 11 Among the various cytokines, TNF- α receptor signaling plays a pre 12 role in bone loss in arthritis. TNF- α is also involved in controlling osteoblas 13 and function in addition to the induction of osteoclast differentiation leading 14 resorption (Kudo et al., 2002). The effectiveness of blocking TNF- α a 15 treatment of active rheumatoid arthritis established the clinical significance of 16 the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001;	3	and steroids (McCarthy et al., 1989; Celeste et al., 1990; Midy and Plouet, 1994;
5 osteoblast cells, the cells differentiate and osteoblastic markers, including 6 phosphatase (ALP), type-I collagen and osteocalcin, are subsequently 7 Osteoblasts then embed in the extracellular matrix consisting of collagen fibril 8 matrix is mineralized and extended in collagen fibrils. Deposition and maint 9 mineralized skeletal elements are further regulated by various growth factors 10 BMPs and cytokines such as interleukins and tumor necrosis factors (TNFs). 11 Among the various cytokines, TNF- α receptor signaling plays a pre 12 role in bone loss in arthritis. TNF- α is also involved in controlling osteoblas 13 and function in addition to the induction of osteoclast differentiation leading 14 resorption (Kudo et al., 2002). The effectiveness of blocking TNF- α a 15 treatment of active rheumatoid arthritis established the clinical significance of 16 the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001;	4	Hughes et al., 1995; Spelsberg et al., 1999). Once matrix synthesis begins in cultured
 phosphatase (ALP), type-I collagen and osteocalcin, are subsequently Osteoblasts then embed in the extracellular matrix consisting of collagen fibril matrix is mineralized and extended in collagen fibrils. Deposition and maint mineralized skeletal elements are further regulated by various growth factors BMPs and cytokines such as interleukins and tumor necrosis factors (TNFs). Among the various cytokines, TNF-α receptor signaling plays a pre role in bone loss in arthritis. TNF-α is also involved in controlling osteoblas and function in addition to the induction of osteoclast differentiation leading resorption (Kudo et al., 2002). The effectiveness of blocking TNF-α a treatment of active rheumatoid arthritis established the clinical significance of the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001; 	5	osteoblast cells, the cells differentiate and osteoblastic markers, including alkaline
 Osteoblasts then embed in the extracellular matrix consisting of collagen fibril matrix is mineralized and extended in collagen fibrils. Deposition and maint mineralized skeletal elements are further regulated by various growth factors BMPs and cytokines such as interleukins and tumor necrosis factors (TNFs). Among the various cytokines, TNF-α receptor signaling plays a pre role in bone loss in arthritis. TNF-α is also involved in controlling osteoblas and function in addition to the induction of osteoclast differentiation leading resorption (Kudo et al., 2002). The effectiveness of blocking TNF-α a treatment of active rheumatoid arthritis established the clinical significance of the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001; 	6	phosphatase (ALP), type-I collagen and osteocalcin, are subsequently activated.
 matrix is mineralized and extended in collagen fibrils. Deposition and maint mineralized skeletal elements are further regulated by various growth factors BMPs and cytokines such as interleukins and tumor necrosis factors (TNFs). Among the various cytokines, TNF-α receptor signaling plays a pre role in bone loss in arthritis. TNF-α is also involved in controlling osteoblas and function in addition to the induction of osteoclast differentiation leading resorption (Kudo et al., 2002). The effectiveness of blocking TNF-α a treatment of active rheumatoid arthritis established the clinical significance of the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001; 	7	Osteoblasts then embed in the extracellular matrix consisting of collagen fibrils, and the
9 mineralized skeletal elements are further regulated by various growth factors 10 BMPs and cytokines such as interleukins and tumor necrosis factors (TNFs). 11 Among the various cytokines, TNF- α receptor signaling plays a pre 12 role in bone loss in arthritis. TNF- α is also involved in controlling osteoblas 13 and function in addition to the induction of osteoclast differentiation leading 14 resorption (Kudo et al., 2002). The effectiveness of blocking TNF- α a 15 treatment of active rheumatoid arthritis established the clinical significance of 16 the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001;	8	matrix is mineralized and extended in collagen fibrils. Deposition and maintenance of
 BMPs and cytokines such as interleukins and tumor necrosis factors (TNFs). Among the various cytokines, TNF-α receptor signaling plays a pre role in bone loss in arthritis. TNF-α is also involved in controlling osteoblas and function in addition to the induction of osteoclast differentiation leading resorption (Kudo et al., 2002). The effectiveness of blocking TNF-α a treatment of active rheumatoid arthritis established the clinical significance of the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001; 	9	mineralized skeletal elements are further regulated by various growth factors including
11 Among the various cytokines, TNF- α receptor signaling plays a pre 12 role in bone loss in arthritis. TNF- α is also involved in controlling osteoblas 13 and function in addition to the induction of osteoclast differentiation leading 14 resorption (Kudo et al., 2002). The effectiveness of blocking TNF- α a 15 treatment of active rheumatoid arthritis established the clinical significance of 16 the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001;	10	BMPs and cytokines such as interleukins and tumor necrosis factors (TNFs).
role in bone loss in arthritis. TNF- α is also involved in controlling osteoblas and function in addition to the induction of osteoclast differentiation leading resorption (Kudo et al., 2002). The effectiveness of blocking TNF- α a treatment of active rheumatoid arthritis established the clinical significance of the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001;	11	Among the various cytokines, TNF- α receptor signaling plays a predominant
and function in addition to the induction of osteoclast differentiation leading resorption (Kudo et al., 2002). The effectiveness of blocking TNF- α a treatment of active rheumatoid arthritis established the clinical significance of the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001;	12	role in bone loss in arthritis. TNF- α is also involved in controlling osteoblast survival
 resorption (Kudo et al., 2002). The effectiveness of blocking TNF-α a treatment of active rheumatoid arthritis established the clinical significance of the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001; 	13	and function in addition to the induction of osteoclast differentiation leading to bone
 treatment of active rheumatoid arthritis established the clinical significance of the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001; 	14	resorption (Kudo et al., 2002). The effectiveness of blocking TNF- α actions in
16 the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001;	15	treatment of active rheumatoid arthritis established the clinical significance of TNF- α in
•	16	the pathogenesis of inflammatory bone diseases (Feldmann and Maini, 2001; Scott and

1	<u>Kingsley, 2006</u> . However, the underlying mechanism of TNF- α in the regulation of
2	differentiation of osteoblasts has not been fully elucidated.
3	Peroxisome proliferator-activated receptors (PPARs) including PPARa,
4	PPAR β/δ and PPAR γ are categorized to the family of nuclear hormone receptors
5	(Desvergne and Wahli, 1999). PPAR γ is activated by natural ligands such as
6	polyunsaturated fatty acids and metabolites of prostaglandins and synthetic ligands,
7	thiazolidinediones, such as rosiglitazone, pioglitazone and troglitazone (Willson et al.,
8	<u>2000</u>). Recent studies have provided evidence that PPAR γ <u>activity may</u> directly
9	inhibit bone formation by diverting mesenchymal stem cells from the osteogenic
10	process to the adipocytic lineage (Grey, 2008). Clinical studies have also revealed that
11	thiazolidinediones decrease markers of bone formation with reduction in bone mass and
12	increase in fracture <u>incidence</u> in women (Grey et al., 2007; Grey, 2008). However, the
13	underlying mechanism by which PPARs affect osteoblastic differentiation has yet to be
14	clarified.
15	The pluripotent mesenchymal precursor cell line, C2C12, a subclone of a

16 mouse myoblastic cell line, has been widely used as a model to investigate the early

1	stages of osteoblast differentiation during bone formation in muscular tissues.
2	Treatment of C2C12 cells with various TGF- β superfamily ligands has distinct effects
3	on differentiation, and BMPs inhibit myoblast differentiation of C2C12 cells and
4	promote osteoblastic cell differentiation (Katagiri et al., 1994; Ebisawa et al., 1999).
5	In the present study, we investigated the cellular mechanisms by which PPAR agonists
6	interact in the process of osteoblastic differentiation regulated by the activation of BMP
7	and TNF- α with a focus on the interaction between BMP-Smad and PPAR signaling.
8	

1 **MATERIALS AND METHODS** 2 3 Reagents and supplies 4 Dulbecco's Modified Eagle's Medium, penicillin-streptomycin solution, 5 dimethylsulfoxide (DMSO), and the PPARa antagonist GW6471 were purchased from 6 Sigma-Aldrich Co. Ltd. (St. Louis, MO). Recombinant human TNF-α was obtained 7 from PeproTech EC Ltd. (London, UK). Recombinant human BMP-2, -4, -6 and -7 8 were purchased from R&D Systems, Inc. (Minneapolis, MN); ERK inhibitor U0126 and 9 p38-MAPK inhibitor SB203580 were from Promega Corp. (Madison, WI); SAPK/JNK 10 inhibitor SP600125 was from Biomol Lab. Inc. (Plymouth Meeting, PA); and the JAK 11 family tyrosine kinase inhibitor AG490, Akt inhibitor SH-5 and NFkB activation 12 inhibitor IV were from Calbiochem (San Diego, CA). Plasmids of BRE-Luc and Id-1-Luc were kindly provided by Drs. Tetsuro Watabe and Kohei Miyazono, Tokyo 13 The PPAR α agonist fenofibric acid and the PPAR γ agonist 14 University, Japan. 15 pioglitazone were provided by Kaken Pharmaceutical Co. Ltd. (Tokyo, Japan) and 16 Takeda Chemical Industries (Osaka, Japan), respectively.

2 Cell culture and morphological examination

3	The mouse myoblast cell line C2C12 was obtained from American Type Culture
4	Collection (Manassas, VA). C2C12 cells were cultured in DMEM supplemented with
5	10% fetal calf serum (FCS) and penicillin-streptomycin solution at 37°C under a humid
6	atmosphere of 95% air/5% CO ₂ . Changes in cell morphology were monitored using an
7	inverted microscope.
8	
9	RNA extraction, RT-PCR, and quantitative real-time PCR analysis
10	To prepare total cellular RNA, C2C12 cells were cultured in a 12-well plate (1 \times 10 ⁵
11	viable cells/well) and treated with the indicated concentrations of TNF- α and BMPs in
12	combination with a PPAR α agonist (fenofibric acid), a PPAR γ agonist (pioglitazone)
13	and various inhibitors including GW6471, U0126, SB203580, SP600125, AG490,
14	NFκB inhibitor and SH-5 in serum-free DMEM. After 48-h culture, the medium was
15	removed, and total cellular RNA was extracted using TRIzol® (Invitrogen Corp.,
16	Carlsbad, CA), quantified by measuring absorbance at 260 nm. The extracted RNA

- 9 -

1	(1.0 μ g) was subjected to an RT reaction using the First-Strand cDNA synthesis
2	system® (Invitrogen Corp.) with random hexamer (50 ng/ μ l), reverse transcriptase (200
3	U), and deoxynucleotide triphosphate (2.5 mM) at 42°C for 55 min and at 70°C for 10
4	min. Subsequently, hot-start PCR was performed using MgCl ₂ (50 mM),
5	deoxynucleotide triphosphate (2.5 mM), and 1.5 U of Taq DNA polymerase (Invitrogen
6	Corp.) under the conditions we previously reported (Mukai et al., 2007; Matsumoto et
7	al., 2010). PCR primer pairs, custom-ordered from Invitrogen Corp., were selected
8	from different exons of the corresponding genes as follows: PPAR α , 1769-1789 and
9	1950-1969 (from NM_011144); PPARγ, 567-588 and 838-858 (from NM_011146); Id-1,
10	225-247 and 364-384 (from NM_010495); runt-related transcription factor 2 (Runx2),
11	1041-1062 and 1379-1400 (from NM_009820); osteocalcin, 125-144 and 312-331
12	(NM_007541); type-1 collagen (collagen-1), 3872-3891 and 3922-3941 (NM_007742);
13	ALP, 1365-1385 and 1549-1568 (NM_007431); TNFR1, 931-951 and 1211-1231
14	(BC052675); TNFR2, 142-162 and 1142-1162 (Y14622); and a house-keeping gene,
15	ribosomal protein L19 (RPL19), 373-393 and 547-567 (from NM_009078). Primer
16	pairs for mouse BMP type-1 and type-2 receptors and Smads were selected as we

1	reported previously (Otani et al., 2007; Takeda et al., 2007). The expression of
2	PPAR α , PPAR γ and RPL19 mRNAs was detected by RT-PCR analysis. Aliquots of
3	PCR products were electrophoresed on 1.5% agarose gels and visualized after ethidium
4	bromide staining. For the quantification of mRNA levels of PPARs, Runx2,
5	osteocalcin, collagen-1, ALP, TNFRs, BMP receptors, Smads and Id-1, real-time PCR
6	was performed using the StepOnePlus® real-time PCR system (Applied Biosystems,
7	Foster City, CA) under optimized annealing conditions, following the manufacturer's
8	protocol with the following profile: 40 cycles each at 95°C for 3 sec and 60-62°C for 30
9	sec. The threshold cycle (Ct) values were calculated using the StepOnePlus [™] system
10	software (Applied Biosystems). The relative expression of each mRNA was calculated
11	by the ΔCt method, in which ΔCt is the value obtained by subtracting the Ct value of
12	RPL19 mRNA from the Ct value of the target mRNA, and the amount of target mRNA
13	relative to RLP19 mRNA was expressed as $2^{-(\Delta Ct)}$. The data are expressed as the ratio
14	of target mRNA to RPL19 mRNA.

16 Western immunoblot analysis

1	Cells (1 \times 10 ⁵ viable cells/well) were precultured in 12-well plates in DMEM
2	containing 10% FCS for 24 h. After preculture, the medium was replaced with
3	serum-free fresh medium, and then cells were treated with the indicated concentrations
4	of the PPAR agonist (fenofibric acid) and PPAR agonist (pioglitazone) for 24 h $$
5	before addition of TNF- α and BMP-4. After stimulation with growth factors for 15
6	and 60 min, cells were solubilized in 100 μ l RIPA lysis buffer (Upstate Biotechnology,
7	Inc., Lake Placid, NY) containing 1 mM Na ₃ VO ₄ , 1 mM sodium fluoride, 2% sodium
8	dodecyl sulfate, and 4% β -mercaptoethanol. For detecting protein expression of
9	PPAR α and PPAR γ , cell lysates were collected from cells treated with BMP-4 for 48 h
10	and 72 h. For detecting protein expression of TNFRs, cell lysates were collected from
11	cells treated with PPAR α and PPAR γ agonists for 48 h. The cell lysates were then
12	subjected to SDS-PAGE/immunoblotting analysis as we previously reported using
13	anti-phospho-Smad1/5/8 antibody (Cell Signaling Technology, Inc., Beverly, MA),
14	anti-phospho- and anti-total-extracellular signal-regulated kinase (ERK) 1/2 MAPK
15	antibodies (Cell Signaling Technology, Inc.), anti-phospho- and anti-total-p38 MAPK
16	antibodies (Cell Signaling Technology, Inc.), anti-phospho- and

1	anti-total-stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK)
2	MAPK antibodies (Cell Signaling Technology, Inc.), anti-phospho- and anti-total
3	NF κ B-p65 antibodies, and anti-phospho- and anti-total I κ B- α antibodies (Cell
4	Signaling Technology, Inc.), anti-phospho- and anti-total-Stat3 and Stat5 antibodies
5	(Cell Signaling Technology, Inc.), anti-phospho- and anti-total-Akt antibodies (Cell
6	Signaling Technology, Inc.), anti-PPAR α (H-98) and anti-PPAR γ (H-100) antibodies
7	(Santa Cruz Biotechnology, Inc., Santa Cruz, CA), anti-TNFR1 (H-271) and
8	anti-TNFR2 (H-202) antibodies (Santa Cruz Biotechnology, Inc.), and anti-actin
9	antibody (Sigma-Aldrich Co. Ltd.). The relative integrated density of each protein
10	band was digitized by NIH image J 1.34s.
11	
12	Transient transfection and luciferase assay
13	C2C12 cells (5 \times 10 ⁴ viable cells) were precultured in 12-well plates in DMEM with
14	10% FCS. The cells were then transiently transfected with 500 ng of BRE-Luc or
15	Id-1-Luc reporter plasmids and 50 ng of cytomegalovirus-β-galactosidase plasmid
16	(pCMV-β-gal) using FuGENE 6 (Roche Molecular Biochemicals, Indianapolis, IN) for

1	12 h. The cells were then treated with the indicated concentrations of PPAR α and
2	PPAR γ agonists in combination with BMP-4 in serum-free fresh medium for 24 h.
3	The cells were washed with PBS and lysed with Cell Culture Lysis Reagent (Toyobo,
4	Osaka, Japan). Luciferase activity and β -galactosidase (β -gal) activity of the cell
5	lysate were measured by luminescencer-PSN (ATTO, Tokyo, Japan). The data are
6	shown as the ratio of luciferase to β -gal activity.
7	
8	Statistical analysis
9	All results are shown as means \pm SEM of data from at least three separate experiments,
10	each performed with triplicate samples. Differences between groups were analyzed
11	for statistical significance using ANOVA with Fisher's protected least significant
12	difference (PLSD) test or unpaired <i>t</i> -test, when appropriate, to determine differences
13	(StatView 5.0 software, Abacus Concepts, Inc., Berkeley, CA). P values < 0.05 were
14	accepted as statistically significant.
15	

1	RESULTS
2	
3	We first examined the effects of PPAR agonists on BMP-induced osteoblastic
4	differentiation of C2C12 cells. BMP ligands including BMP-2, -4, -6 and -7 (100
5	ng/ml) facilitated osteoblastic differentiation of C2C12 cells for 48 h as demonstrated
6	by the increased expression levels of Runx2, osteocalcin and type-1 collagen
7	(collagen-1) mRNAs (Fig. 1A). BMP-2 and -4 (100 ng/ml) stimulated the expression
8	of these bone differentiation markers more effectively than did the same concentrations
9	of BMP-6 and -7. Of note, the presence of a PPAR α agonist (fenofibric acid, 3 μ M),
10	but not a PPAR γ agonist (pioglitazone, 3 μ M), significantly enhanced osteoblast
11	differentiation induced by BMP-4 (100 ng/ml) (Fig. 1A).
12	To know whether the effects of PPAR α agonist (fenofibric acid) on enhancing
13	<u>BMP-4-induced osteoblast differentiation occurred through PPARα, a specific</u>
14	antagonist of PPAR α , GW6471, was used in the same culture conditions. As shown in
15	Fig. 1B, the effects of PPAR α agonist (3 μ M) on Runx2 and collagen-1 expression
16	induced by BMP-4 (100 ng/ml) were reversed in the presence of GW6471 (1 to 10 μ M)

1 <u>concentration dependently.</u>

2	To elucidate the mechanism by which PPAR agonists modulate the expression
3	levels of osteoblastic markers in C2C12 cells, effects of PPAR agonists on BMP
4	receptor signaling were subsequently examined. It was found that the PPAR α agonist
5	(3 μ M) significantly enhanced promoter activity of the BMP-responsive element
6	represented by BRE-Luc activity induced by BMP-4 (100 ng/ml) (Fig. 1C). In
7	contrast, the PPARy agonist (3 μ M) reduced BRE-Luc activity induced by BMP-4 (100
8	ng/ml) (Fig. 1C). Similar results were obtained by a promoter assay using the BMP
9	target gene Id-1-Luc (data not shown). Furthermore, the PPAR α agonist (3 μ M)
10	significantly reduced mRNA levels of inhibitory Smad6 and Smad7, while treatment
11	with the PPAR γ agonist (3 $\mu M)$ decreased the expression level of BMPRII mRNA in
12	C2C12 cells (Fig. 1D). With regard to the BMP receptor system, several preferential
13	combinations of BMP ligands and receptors have been recognized to date (Shimasaki et
14	al., 2004). BMP-2 and -4 most readily bind to ALK-3 and/or ALK-6 in combination
15	with the type-2 receptor BMPRII. Since ALK-6 is not expressed in C2C12 cells
16	(Mukai et al., 2007), the major functional complex for the osteoblastic differentiation

1	induced by BMP-4 is likely ALK-3/BMPRII. Thus, PPARγ activity was found to
2	suppress BMP-Smad signaling by inhibiting BMPRII expression, whereas PPAR α
3	enhanced BMP receptor signaling by suppressing inhibitory Smad6/7. On the other
4	hand, BMP-2, -4, -6 and -7 (100 ng/ml) induced increases in mRNA levels of PPAR α
5	and PPAR γ in C2C12 cells cultured for 48 h (Fig. 1E). It was also found that BMP-4
6	(100 ng/ml) stimulated the expression of PPAR α and PPAR γ protein levels in 48 h to 72
7	h cultures <u>(Fig. 1F)</u> .
8	We next studied the effects of PPAR activities on the interaction between
9	BMP and TNF- α in C2C12 cells. Osteoblastic differentiation induced by BMP-2, -4,
10	-6 and -7 (100 ng/ml) was suppressed by co-treatment with TNF- α (10 ng/ml), with the
11	most pronounced effects on BMP-2- and BMP-4-induced differentiation (Fig. 2A).
12	Importantly, the inhibitory effects of TNF-α (10 ng/ml) on BMP-4 (100 ng/ml)-induced
13	mRNA expression of osteoblastic markers including Runx2, osteocalcin and collagen-1
14	were reversed by co-treatment with PPAR α and PPAR γ agonists (3 μ M), although the
15	impact of PPAR γ agonist on TNF- α inhibition of BMP-4-induced ALP expression was
16	not significant (Fig. 2B). Smad1/5/8 phosphorylation induced by BMP-4 (100 ng/ml)

1	was suppressed by treatment with TNF- α (100 ng/ml) (Fig. 2C). Of note, the
2	inhibitory actions of TNF- α (10 ng/ml) on BMP-induced Smad1/5/8 phosphorylation
3	were reversed in the presence of either the PPAR α or PPAR γ agonist (3 μ M) (Fig. 2C).
4	In accordance with the results for Smad phosphorylation, suppression by TNF- α (10
5	ng/ml) of BMP target gene Id-1 transcription induced by BMP-4 was also partially
6	reversed by co-treatment with PPAR α and PPAR γ agonists (3 μ M) (Fig. 2D). The
7	effects of TNF- α are mediated through two distinct receptors: type 1, also called
8	p60/p55 receptor (TNFR1), and type 2, also called p80/p75 receptor (TNFR2) (Grell et
9	<u>al., 1994</u>). PPAR α and PPAR γ agonists (3 μ M) decreased <u>the expression levels of</u>
10	TNFR1 and TNFR2 mRNAs (Fig. 2E). In addition, the changes in TNFR expression
11	by PPAR α and PPAR γ agonist (3 μ M) were evaluated by immunoblot analysis using
12	anti-TNFR1 and TNFR2 antibodies, showing that the protein level of TNFR2 was also
13	decreased by treatments with PPAR α and PPAR γ agonists (Fig. 2F). The mechanism
14	by which PPAR α/γ activities reduced TNF- α actions may be contributed to the
15	downregulation of TNFR signaling in C2C12 cells. Thus, both actions of PPAR α and
16	PPAR γ agonists antagonize suppression by TNF- α of osteoblastic differentiation

1	induced by BMP-4 with restoration of TNF- α -induced suppression of Smad1/5/8
2	phosphorylation and Id-1 transcription.
3	Subsequently, the effects of PPAR α and PPAR γ agonists on TNF- α -induced
4	cellular signaling were investigated. TNF- α (100 ng/ml) readily stimulated MAPK
5	phosphorylation including ERK1/ERK2, p38-MAPK, SAPK/JNK pathways in C2C12
6	cells (Fig. 3A). The TNF- α actions were not significantly altered by treatment with
7	BMP-4 (100 ng/ml). Notably, TNF- α (100 ng/ml)-induced phosphorylation of
8	MAPKs including p38-MAPK and SAPK/JNK pathways (Fig. 3A) was inhibited in the
9	presence of either the PPARa or PPARy agonist (3 μM). NFkB, IkB and Stat3
10	pathways were also stimulated by TNF- α (100 ng/ml), and the stimulation of these
11	pathways was not affected by co-treatment with BMP-4 (100 ng/ml) (Fig. 3B).
12	TNF- α -induced activation of NF κ B signaling was significantly suppressed by the
13	PPAR γ agonist (3 μM), while I κB and Stat3 phoshorylation induced by TNF- α was
14	inhibited by either the PPAR α or PPAR γ agonist (3 μ M). The Akt pathway was also
15	stimulated by TNF- α (100 ng/ml); however, PPAR α or PPAR γ agonist (3 μ M) failed to
16	suppress Akt phosphorylation (Fig. 3B).

1	To further explore the major pathways for TNF- α receptor signaling in
2	BMP-4-induced osteoblastic differentiation, cells were treated with specific inhibitors
3	for ERK1/ERK2, p38-MAPK SAPK/JNK, Stat and NFkB. Inhibition of SAPK/JNK,
4	Stat and NFkB pathways with SP600125, AG490 and NFkB inhibitor, respectively,
5	reversed the suppression by TNF- α (10 ng/ml) of Runx2 (Fig. 4A) and osteocalcin (Fig.
6	4B) mRNA expression induced by BMP-4 (100 ng/ml). On the other hand,
7	ERK1/ERK2 and p38 inhibition by U0126 and SB203580, respectively, failed to restore
8	the suppression by TNF- α (10 ng/ml) of Runx2 (Fig. 4A) and osteocalcin (Fig. 4B)
9	mRNA levels amplified by BMP-4 (100 ng/ml). We thus conclude that SAPK/JNK,
10	Stat and NF κ B signaling plays an important role in PPAR α and PPAR γ antagonizing the
11	suppression by TNF- α of osteoblastic differentiation.

1	DISCUSSION
2	
3	In the present study, we investigated the cellular mechanism by which PPAR
4	agonists interact in osteoblastic differentiation regulated by BMP-4 and TNF- α using
5	mouse myoblastic C2C12 cells. It was found that a PPAR α agonist, fenofibric acid,
6	stimulated BMP-4-induced osteoblastic differentiation through the PPAR α activity. Of
7	note, PPAR α agonist was revealed to enhance BMP-4 receptor signaling by suppression
8	of inhibitory Smad6/7 expression. TNF- α -induced SAPK/JNK, NF κ B and Stat
9	activation, which led to the inhibition of osteoblastic differentiation, was in turn
10	inhibited by treatment with PPAR α and PPAR γ agonists. The present results
11	demonstrate that PPAR α actions promote osteoblastic differentiation induced by BMP-4,
12	while both activities of PPAR α and PPAR γ are effective in suppressing TNF- α actions.
13	In addition, <u>BMPs</u> also increased the sensitivity of PPAR agonists by upregulating the
14	expression of PPAR α and PPAR γ in the process of <u>osteoblastic differentiation</u> . <u>Hence</u> ,
15	PPAR activities are functionally involved in modulating the interaction between BMP
16	and TNF- α signaling, which is a key factor for osteoblastic differentiation (Fig. 5).

1	Although no bone abnormalities were identified in PPAR α knockout mice
2	(Wu et al., 2000), there is substantial evidence that PPAR α has activities in bone
3	development and in bone metabolism (Lecka-Czernik (Curr Osteoporos Rep 8: 84-90,
4	2010) provides a comprehensive review of relevant literature (Lecka-Czernik, 2010)).
5	In particular, the collective data suggests that PPAR α may regulate bone metabolism
6	and bone marrow conditions by providing energy through fatty acid oxidation and by
7	controlling cell commitment within hematopoietic lineages rather than affecting the
8	differentiation of bone cells (Lecka-Czernik, 2010). Based on our present data,
9	PPAR α has beneficial effects, at least in part, in the early process of osteoblastic
10	differentiation preferentially in combination with the activity of BMP-4, and both
11	PPAR α and PPAR γ elicit anti-TNF α actions in the process of osteoblast differentiation.
12	PPAR γ is a critical transcription factor for the induction of adipocyte
13	differentiation based on the experimental and clinical studies using PPAR γ agonists,
14	thiazolidinediones (Grey, 2008). PPARy transcripts are expressed in osteoblasts
15	(Johnson et al., 1999; Jackson and Demer, 2000; Jeon et al., 2003) and osteoclast
16	precursors (Mbalaviele et al., 2000; Chan et al., 2007). PPARγ agonists promote

i	
1	adipogenesis instead of osteoblastogenesis in vitro (Gimble et al., 1996). PPARy
2	heterozygous-deficient mice demonstrate increased bone mass by stimulating
3	osteoblastogenesis (Akune et al., 2004). Taken together, it appears that PPARy activity
4	preferentially promotes adipogenetic cascade instead of the process of
5	osteoblastogenesis. In the present study, PPAR γ activity was found to decrease
6	Smad1/5/8 and its downstream signaling induced by BMP-4 by suppressing BMPRII
7	expression in C2C12 cells, suggesting an inhibitory role of PPAR γ activity in the early
8	process of BMP-induced osteoblastic differentiation. <u>However, the activity of PPARγ</u>
9	did not seem likely enough to attain the biological inhibition of BMP-induced osteoblast
10	differentiation evaluated by the levels of Runx2, osteocalcin and collagen-1 expression.
11	The interaction between PPAR and BMPs may be involved in the dual actions of
12	adipogenesis and osteogenesis by BMPsAccording to an analysis of BMPs on the
13	mesenchymal stem cell differentiation, BMP-2, -4, -6, -7 and -9 activated adipogenic
14	and osteogenic differentiation of mesenchymal stem cells (Kang et al., 2009).
15	Interestingly, overexpression of PPARy2 facilitated both osteogenic and adipogenic
16	differentiation and PPARy2 knockdown inhibited not only adipogenic differentiation but

1	also BMP-induced ossification (Kang et al., 2009), suggesting that PPARy activity is
2	also, at least in part, involved in promoting osteogenic differentiation.
3	Imbalanced functions of osteoclasts and osteoblasts lead to bone damage seen
4	in patients with inflammatory bone diseases such as rheumatoid arthritis. Since bone
5	loss in arthritis is related to activation of the TNF- α system, it can be hypothesized that
6	TNF- α directly controls osteoblast survival and/or function in addition to its induction
7	of osteoclast differentiation leading to excess bone resorption (Kudo et al., 2002). In
8	this regard, we previously reported that TNF- α suppresses BMP-2-induced expression
9	of osteoblast markers such as Runx2, osteocalcin and ALP (Mukai et al., 2007), in
10	which MAPK and NF κ B are involved in the suppression by TNF- α of BMP-2 activity
11	in C2C12 cells (Mukai et al., 2007; Yamashita et al., 2008; Matsumoto et al., 2010).
12	The present results further demonstrated that, among BMP ligands, BMP-4 most
13	effectively augments PPAR α activity leading to promotion of osteoblastic
14	differentiation. BMP-4 also increased the sensitivity of PPAR agonists by
15	upregulating the expression of PPAR α and PPAR γ in the process of osteoblastic
16	differentiation. Moreover, the activities of PPAR α and PPAR γ are involved in

antagonizing the TNF-α signaling that is a negative factor for osteoblastic differentiation induced by BMP-4.

3	In our earlier study, the expression of other nuclear receptors such as estrogen
4	receptors (ER α and ER β) and glucocorticoid receptor (GCR) in C2C12 cells was
5	significantly increased by BMP-2 stimulation (Matsumoto et al., 2010). BMP-2
6	increased the sensitivities of ERs and GCR, whereas estrogen and glucocorticoid
7	differentially regulated BMP-Smad signaling, and these steroids antagonized TNF- α
8	signaling in a different manner (Matsumoto et al., 2010). In the present study, in
9	addition to ER and GCR actions, PPARs were also found to antagonize TNF- α activities
10	in osteoblastic differentiation. Further studies are needed to utilize the efficacious
11	actions of PPAR α but modulate PPAR γ activity in osteoblasts in relation to the activities
12	of other nuclear receptor family molecules.
13	Collectively, PPARs are functionally involved in the process of osteoblast
14	differentiation directed by BMP-4 and TNF- α . BMP-4 increases the sensitivities of

- 15 PPARs, PPARα in turn upregulates and PPARγ represses BMP-Smad signaling, and
- 16 PPARs antagonize TNF- α signaling in a different manner (**Fig. 5**). Understanding the

1	integrated mechanisms behind BMP- and TNF- α -regulated osteoblastic differentiation
2	may lead to the development of novel therapeutic strategies for osteoporosis and/or
3	inflammatory bone disorders.
4	

1 ACKNOWLEDGEMENTS 2 3 3 We thank Dr. R. Kelly Moore for helpful discussion and critical reading of the 4 manuscript. We are very grateful to Drs. Tetsuro Watabe and Kohei Miyazono, Tokyo 5 University, Japan for providing BRE-Luc and Id-1-Luc plasmids. This work was 6 supported in part by Grants-in-Aid for Scientific Research. 7 8

REFERENCES
Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y,
<u>Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H (2004)</u>
PPARgamma insufficiency enhances osteogenesis through osteoblast formation
from bone marrow progenitors. J Clin Invest 113:846-855.
Celeste AJ, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, Wang EA, Wozney JM
(1990) Identification of transforming growth factor beta family members present
in bone-inductive protein purified from bovine bone. Proc Natl Acad Sci U S A
<u>87:9843-9847.</u>
Chan BY, Gartland A, Wilson PJ, Buckley KA, Dillon JP, Fraser WD, Gallagher JA
(2007) PPAR agonists modulate human osteoclast formation and activity in vitro.
Bone 40:149-159.
Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear
control of metabolism. Endocr Rev 20:649-688.
Ebisawa T, Tada K, Kitajima I, Tojo K, Sampath TK, Kawabata M, Miyazono K,
Imamura T (1999) Characterization of bone morphogenetic protein-6 signaling
pathways in osteoblast differentiation. J Cell Sci 112:3519-3527.
Feldmann M, Maini RN (2001) Anti-TNF alpha therapy of rheumatoid arthritis: what
have we learned? Annu Rev Immunol 19:163-196.
Gimble JM, Robinson CE, Wu X, Kelly KA, Rodriguez BR, Kliewer SA, Lehmann JM,
Morris DC (1996) Peroxisome proliferator-activated receptor-gamma activation
by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol
Pharmacol 50:1087-1094.
Grell M, Zimmermann G, Hulser D, Pfizenmaier K, Scheurich P (1994) TNF receptors
TR60 and TR80 can mediate apoptosis via induction of distinct signal pathways.
<u>J Immunol 153:1963-1972.</u>
Grey A (2008) Skeletal consequences of thiazolidinedione therapy. Osteoporos Int
<u>19:129-137.</u>
Grey A, Bolland M, Gamble G, Wattie D, Horne A, Davidson J, Reid IR (2007) The
peroxisome proliferator-activated receptor-gamma agonist rosiglitazone
decreases bone formation and bone mineral density in healthy postmenopausal
women: a randomized, controlled trial. J Clin Endocrinol Metab 92:1305-1310.

I

1	Hughes FJ, Collyer J, Stanfield M, Goodman SA (1995) The effects of bone
2	morphogenetic protein-2, -4, and -6 on differentiation of rat osteoblast cells in
3	vitro. Endocrinology 136:2671-2677.
4	Jackson SM, Demer LL (2000) Peroxisome proliferator-activated receptor activators
5	modulate the osteoblastic maturation of MC3T3-E1 preosteoblasts. FEBS Lett
6	<u>471:119-124.</u>
7	Jeon MJ, Kim JA, Kwon SH, Kim SW, Park KS, Park SW, Kim SY, Shin CS (2003)
8	Activation of peroxisome proliferator-activated receptor-gamma inhibits the
9	Runx2-mediated transcription of osteocalcin in osteoblasts. J Biol Chem
10	<u>278:23270-23277.</u>
11	Johnson TE, Vogel R, Rutledge SJ, Rodan G, Schmidt A (1999) Thiazolidinedione
12	effects on glucocorticoid receptor-mediated gene transcription and
13	differentiation in osteoblastic cells. Endocrinology 140:3245-3254.
14	Kang Q, Song WX, Luo Q, Tang N, Luo J, Luo X, Chen J, Bi Y, He BC, Park JK, Jiang
15	W, Tang Y, Huang J, Su Y, Zhu GH, He Y, Yin H, Hu Z, Wang Y, Chen L, Zuo
16	GW, Pan X, Shen J, Vokes T, Reid RR, Haydon RC, Luu HH, He TC (2009) A
17	comprehensive analysis of the dual roles of BMPs in regulating adipogenic and
18	osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev
19	<u>18:545-559.</u>
20	Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney
21	JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts
22	the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J
23	<u>Cell Biol 127:1755-1766.</u>
24	Kudo O, Fujikawa Y, Itonaga I, Sabokbar A, Torisu T, Athanasou NA (2002)
25	Proinflammatory cytokine (TNFalpha/IL-1alpha) induction of human osteoclast
26	formation. J Pathol 198:220-227.
27	Lecka-Czernik B (2010) PPARs in bone: the role in bone cell differentiation and
28	regulation of energy metabolism. Curr Osteoporos Rep 8:84-90.
29	Lieberman JR, Daluiski A, Einhorn TA (2002) The role of growth factors in the repair of
30	bone. Biology and clinical applications. J Bone Joint Surg Am 84-A:1032-1044.
31	Matsumoto Y, Otsuka F, Takano M, Mukai T, Yamanaka R, Takeda M, Miyoshi T,
32	Inagaki K, Sada KE, Makino H (2010) Estrogen and glucocorticoid regulate
33	osteoblast differentiation through the interaction of bone morphogenetic

1	protein-2 and tumor necrosis factor-alpha in C2C12 cells. Mol Cell Endocrinol
2	<u>325:118-127.</u>
3	Mbalaviele G, Abu-Amer Y, Meng A, Jaiswal R, Beck S, Pittenger MF, Thiede MA,
4	Marshak DR (2000) Activation of peroxisome proliferator-activated
5	receptor-gamma pathway inhibits osteoclast differentiation. J Biol Chem
6	<u>275:14388-14393.</u>
7	McCarthy TL, Centrella M, Canalis E (1989) Regulatory effects of insulin-like growth
8	factors I and II on bone collagen synthesis in rat calvarial cultures.
9	Endocrinology 124:301-309.
10	Midy V, Plouet J (1994) Vasculotropin/vascular endothelial growth factor induces
11	differentiation in cultured osteoblasts. Biochem Biophys Res Commun
12	<u>199:380-386.</u>
13	Mukai T, Otsuka F, Otani H, Yamashita M, Takasugi K, Inagaki K, Yamamura M,
14	Makino H (2007) TNF-alpha inhibits BMP-induced osteoblast differentiation
15	through activating SAPK/JNK signaling. Biochem Biophys Res Commun
16	<u>356:1004-1010.</u>
17	Otani H, Otsuka F, Inagaki K, Takeda M, Miyoshi T, Suzuki J, Mukai T, Ogura T,
18	Makino H (2007) Antagonistic effects of bone morphogenetic protein-4 and -7
19	on renal mesangial cell proliferation induced by aldosterone through MAPK
20	activation. Am J Physiol Renal Physiol 292:F1513-1525.
21	Otsuka F (2010) Multiple endocrine regulation by bone morphogenetic protein system.
22	Endocr J 57:3-14.
23	Otsuka F, McTavish K, Shimasaki S (2011) Integral role of GDF-9 and BMP-15 in
24	ovarian function. Mol Reprod Dev 78:9-21.
25	Reddi AH (1997) Bone morphogenetic proteins: an unconventional approach to
26	isolation of first mammalian morphogens. Cytokine Growth Factor Rev 8:11-20.
27	Scott DL, Kingsley GH (2006) Tumor necrosis factor inhibitors for rheumatoid arthritis.
28	<u>N Engl J Med 355:704-712.</u>
29	Shimasaki S, Moore RK, Otsuka F, Erickson GF (2004) The bone morphogenetic
30	protein system in mammalian reproduction. Endocr Rev 25:72-101.
31	Spelsberg TC, Subramaniam M, Riggs BL, Khosla S (1999) The actions and
32	interactions of sex steroids and growth factors/cytokines on the skeleton. Mol
33	Endocrinol 13:819-828.

I

1	Takeda M, Otsuka F, Otani H, Inagaki K, Miyoshi T, Suzuki J, Mimura Y, Ogura T,
2	Makino H (2007) Effects of peroxisome proliferator-activated receptor
3	activation on gonadotropin transcription and cell mitosis induced by bone
4	morphogenetic proteins in mouse gonadotrope L β T2 cells. J Endocrinol
5	<u>194:87-99.</u>
6	Willson TM, Brown PJ, Sternbach DD, Henke BR (2000) The PPARs: from orphan
7	receptors to drug discovery. J Med Chem 43:527-550.
8	Wu X, Peters JM, Gonzalez FJ, Prasad HS, Rohrer MD, Gimble JM (2000) Frequency
9	of stromal lineage colony forming units in bone marrow of peroxisome
10	proliferator-activated receptor-alpha-null mice. Bone 26:21-26.
11	Yamashita M, Otsuka F, Mukai T, Otani H, Inagaki K, Miyoshi T, Goto J, Yamamura M,
12	Makino H (2008) Simvastatin antagonizes tumor necrosis factor-alpha inhibition
13	of bone morphogenetic proteins-2-induced osteoblast differentiation by
14	regulating Smad signaling and Ras/Rho-mitogen-activated protein kinase
15	pathway. J Endocrinol 196:601-613.
16	
17	
18	

1 FIGURE LEGENDS

3	Fig. 1. Effects of PPAR α and PPAR γ agonists on BMP-induced osteoblast
4	differentiation. A) After preculture, C2C12 cells were treated with BMP-2, -4, -6 and
5	-7 (100 ng/ml) in combination with PPAR and PPAR agonists (3 $\mu M)$ for 48 h.
6	Total cellular RNA was extracted and then subjected to PCR reaction. Real-time PCR
7	analysis was performed for quantification of Runx2, osteocalcin and collagen-1 mRNA
8	levels. The expression levels of target genes were standardized by RPL19 level in
9	each sample. <u>B) Cells were treated with BMP-4 (100 ng/ml) in combination with</u>
10	<u>PPARa agonist (3 μM) and the PPARa antagonist GW6471 (1 to 10 μM) for 48 h.</u>
11	Total cellular RNA was extracted and then subjected to real-time PCR analysis for
12	quantification of Runx2 and collagen-1 mRNA levels. The expression levels of target
13	genes were standardized by RPL19 level in each sample. C) Cells were transiently
14	transfected with BRE-Luc reporter plasmid (500 ng) and pCMV-β-gal. The cells were
15	then treated with BMP-4 (100 ng/ml) and with PPAR α and PPAR γ agonists (3 μM) for
16	24 h. The cells were lysed and the luciferase activity and β -galactosidase (β -gal)

1	activity were measured by a luminometer. The data were expressed as the ratio of
2	luciferase to β -gal activity. <u>D</u>) Cells were treated with PPAR α and PPAR γ agonists (3)
3	$\mu M)$ for 48 h, and total cellular RNA was extracted. Real-time PCR analysis was
4	performed for quantification of BMPRII, ActRII, ALK-2, ALK-3, Smad6 and Smad7
5	mRNA levels. The expression levels of target genes were standardized by RPL19
6	level in each sample. <u>E)</u> Cells were treated with BMP-2, -4, -6 and -7 (100 ng/ml) for
7	48 h, and total cellular RNA was extracted. Real-time PCR analysis was performed
8	for quantification of PPAR α and PPAR γ mRNA levels. The expression levels of target
9	genes were standardized by RPL19 level in each sample. <u>F)</u> For protein analysis, cells
10	were treated with BMP-4 (100 ng/ml) for 48 h and 72 h. The cells were then lysed and
11	subjected to SDS-PAGE/immunoblot (IB) analysis using antibodies that detect PPAR α
12	and PPAR γ , and actin as an internal control. <u>Results (A-E)</u> are shown as means \pm
13	SEM of data from at least three separate experiments, each performed with triplicate
14	samples. The results (F) shown are representative of those obtained from three
15	independent experiments. The results were analyzed by ANOVA with Fisher's post
16	hoc test (A-E). For each result within a panel, $\underline{*}, P < 0.05$ vs. control in each set of

<u>comparisons or between the indicated groups</u>; and the values with different superscript
 letters are significantly different at *P* < 0.05.

4	Fig. 2. Effects of TNF- α and PPAR α and PPAR γ agonists on BMP-induced
5	osteoblast differentiation and TNF receptor (TNFR) expression in C2C12 cells. A,
6	B) After preculture, the cells were treated with BMP-2, -4, -6 and -7 (100 ng/ml),
7	TNF- α (10 ng/ml), and PPAR α and PPAR γ agonists (3 μ M) for 48 h. Total cellular
8	RNA was extracted and subjected to PCR reaction. Real-time PCR analysis was
9	performed for quantification of Runx2, osteocalcin, collagen-1 and ALP mRNA levels.
10	The expression levels of target genes were standardized by RPL19 level in each sample.
11	C) After preculture, the cells were pretreated with PPAR and PPAR agonists (3 $\mu M)$
12	for 24 h prior to addition of BMP-2 (100 ng/ml) and TNF- α (100 ng/ml). After
13	60-min culture, the cells were lysed and subjected to SDS-PAGE/immunoblot (IB)
14	analysis using antibodies that detect phosphorylated Smad1/5/8 (pSmad1/5/8) and actin
15	as an internal control. The results shown are representative of those obtained from
16	three independent experiments. The relative integrated density of each protein band

1	was digitized by NIH image J 1.34s, pSmad1/5/8 levels were normalized by actin levels
2	in each sample, and then pSmad1/5/8 levels after 60-min stimulation were expressed as
3	<u>fold changes.</u> D) Cells were treated with BMP-4 (100 ng/ml) and TNF- α (10 ng/ml) in
4	combination with PPAR and PPAR agonists (3 $\mu M)$ for 48 h and total RNA was
5	extracted. Real-time PCR analysis was performed for the quantification of Id-1
6	mRNA levels. The expression levels of target genes were standardized by RPL19
7	level in each sample. E) Cells were treated with PPAR α and PPAR γ agonists (3 μ M)
8	for 48 h and total RNA was extracted. Real-time PCR analysis was performed for
9	quantification of TNFR1 and TNFR2 mRNA levels. The expression levels of target
10	genes were standardized by RPL19 level in each sample. <u>F) For protein analysis, cells</u>
11	were treated with PPAR α and PPAR γ agonists (3 μ M) for 48 h. The cells were then
12	lysed and subjected to SDS-PAGE/immunoblot (IB) analysis using antibodies that
13	detect TNFR1 and TNFR2, and actin as an internal control. The results shown are
14	representative of those obtained from three independent experiments. Results (A-E)
15	are shown as means ± SEM of data from at least three separate experiments, each
16	performed with triplicate samples. The results were analyzed by the unpaired t-test

1 (A) or ANOVA with Fisher's post hoc test (B-E). For each result within a panel, *, P 2 < 0.05 vs. control in each set of comparisons; and the values with different superscript 3 letters are significantly different at P < 0.05. 4 5 Fig. 3. Effects of BMP-4 and PPARa and PPARy agonists on TNF-a-induced 6 MAPK, NF_KB, I_KB, Stat and Akt activation in C2C12 cells. A, B) After preculture, cells were treated with PPAR α and PPAR γ agonists (3 μ M) for 24 h prior to addition of 7 8 BMP-4 (100 ng/ml) and TNF-α (100 ng/ml). After 15- and 60-min culture, cells were 9 lysed and subjected to SDS-PAGE/immunoblot (IB) analysis using anti-phospho- and 10 anti-total-ERK1/ERK2 (pERK and tERK) antibodies, anti-phospho- and anti-total-p38 11 (pP38 and tP38) antibodies, anti-phospho- and anti-total-SAPK/JNK (pJNK and tJNK) 12 antibodies, anti-phospho- and anti-total-NFkB-p65 (pNFkB and tNFkB) antibodies, 13 anti-phospho- and anti-total-I κ B (pI κ B and tI κ B) antibodies, anti-phospho- and 14 anti-total-Stat3 (pStat3 and tStat3) antibodies, and anti-phospho- and anti-total-Akt 15 (pAkt and tAkt) antibodies. The results (A, B) shown are representative of those 16 obtained from three independent experiments. The relative integrated density of each

1	protein band was digitized by NIH image J 1.34s and shown as phospho-/total-protein
2	levels in each panel. Results (A, B) are shown as means \pm SEM of data from at least
3	three separate experiments, each performed with triplicate samples. The results were
4	analyzed by ANOVA with Fisher's post hoc test (A, B). For each result within a panel,
5	the values with different superscript letters are significantly different at $P < 0.05$.
6	
7	Fig. 4. Inhibitory effects of MAPK, NFkB, Stat and Akt pathways on Runx2 and
8	osteocalcin expression regulated by BMP-2 and TNF-a. A, B) After preculture,
9	cells were treated with BMP-4 (100 ng/ml) and TNF- α (10 ng/ml) in the presence or
10	absence of indicated concentrations of the SAPK/JNK inhibitor SP600125, p38
11	inhibitor SB203580, ERK inhibitor U0126, JNK/STAT inhibitor AG490, NFkB
12	activation inhibitor IV and Akt inhibitor SH-5 for 48 h and total cellular RNA was
13	extracted. Real-time PCR was performed for quantification of Runx2 and osteocalcin
14	mRNA levels. The expression levels of target genes were standardized by RPL19
15	level in each sample. Results (A, B) are shown as means \pm SEM of data from at least
16	three separate experiments, each performed with triplicate samples. The results were

1	analyzed by ANOVA with Fisher's post hoc test (A, B). For each result within a panel,
2	the values with different superscript letters are significantly different at $P < 0.05$.
3	
4	Fig. 5. Possible interaction of BMP-4, TNF- α and PPARs in the regulation of
5	osteoblast differentiation. BMP-4 upregulates the expression of PPAR α and PPAR γ
6	in C2C12 cells. A PPAR α agonist, but not a PPAR γ agonist, upregulates Runx2,
7	osteocalcin and collagen-1 expression induced by BMP-4 through downregulating
8	inhibitory Smads (Smad6/7) expression. On the other hand, the PPARy agonist
9	suppressed BMP type-2 receptor (BMPRII) expression, leading to impairment of
10	<u>BMP-Smad1/5/8 signaling.</u> TNF- α -induced activation of MAPK, NF κ B and Stat
11	pathways suppresses the BMP-4-induced osteoblast differentiation. PPAR α and
12	PPAR γ agonists reversed suppression by TNF- α of BMP-4-induced osteoblast
13	differentiation through suppressing SAPK/JNK, NFkB and Stat signaling with reduction
14	of TNF receptor expression.

72 h

В

