40 research outputs found
Characterisation of atypical enteropathogenic E. coli strains of clinical origin
BACKGROUND: Enteropathogenic E. coli (EPEC) is a prominent cause of diarrhoea, and is characterised in part by its carriage of a pathogenicity island: the locus for enterocyte effacement (LEE). EPEC is divided into two subtypes according to the presence of bundle-forming pili (BFP), a fimbrial adhesin that is a virulence determinant of typical EPEC (tEPEC), but is absent from atypical EPEC (aEPEC). Because aEPEC lack BFP, their virulence has been questioned, as they may represent LEE-positive Shiga toxin-producing E. coli (STEC) that have lost the toxin-encoding prophage, or tEPEC that have lost the genes for BFP. To determine if aEPEC isolated from humans in Australia or New Zealand fall into either of these categories, we undertook phylogenetic analysis of 75 aEPEC strains, and compared them with reference strains of EPEC and STEC. We also used PCR and DNA hybridisation to determine if aEPEC carry virulence determinants that could compensate for their lack of BFP. RESULTS: The results showed that aEPEC are highly heterogeneous. Multilocus sequence typing revealed that 61 of 75 aEPEC strains did not belong to known tEPEC or STEC clades, and of those that did, none expressed an O:H serotype that is frequent in tEPEC or STEC strains associated with disease. PCR for each of 18 known virulence-associated determinants of E. coli was positive in less than 15% of strains, apart from NleB which was detected in 30%. Type I fimbriae were expressed by all aEPEC strains, and 12 strains hybridised with DNA probes prepared from either bfpA or bfpB despite being negative in the PCR for bfpA. CONCLUSION: Our findings indicate that clinical isolates of aEPEC obtained from patients in Australia or New Zealand are not derived from tEPEC or STEC, and suggest that functional equivalents of BFP and possibly type I fimbriae may contribute to the virulence of some aEPEC strains
Are Escherichia coli Pathotypes Still Relevant in the Era of Whole-Genome Sequencing?
The empirical and pragmatic nature of diagnostic microbiology has given rise to several different schemes to subtype E.coli, including biotyping, serotyping, and pathotyping. These schemes have proved invaluable in identifying and tracking outbreaks, and for prognostication in individual cases of infection, but they are imprecise and potentially misleading due to the malleability and continuous evolution of E. coli. Whole genome sequencing can be used to accurately determine E. coli subtypes that are based on allelic variation or differences in gene content, such as serotyping and pathotyping. Whole genome sequencing also provides information about single nucleotide polymorphisms in the core genome of E. coli, which form the basis of sequence typing, and is more reliable than other systems for tracking the evolution and spread of individual strains. A typing scheme for E. coli based on genome sequences that includes elements of both the core and accessory genomes, should reduce typing anomalies and promote understanding of how different varieties of E. coli spread and cause disease. Such a scheme could also define pathotypes more precisely than current methods
Shiga Toxin–producing Escherichia coli Strains Negative for Locus of Enterocyte Effacement
The ehx plasmids of these strains are highly related, which suggests acquisition of the large plasmid was central to the strains’ emergence
In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages.
The lipopolysaccharide (O) and flagellar (H) surface antigens of Escherichia coli are targets for serotyping that have traditionally been used to identify pathogenic lineages. These surface antigens are important for the survival of E. coli within mammalian hosts. However, traditional serotyping has several limitations, and public health reference laboratories are increasingly moving towards whole genome sequencing (WGS) to characterize bacterial isolates. Here we present a method to rapidly and accurately serotype E. coli isolates from raw, short read WGS data. Our approach bypasses the need for de novo genome assembly by directly screening WGS reads against a curated database of alleles linked to known and novel E. coli O-groups and H-types (the EcOH database) using the software package srst2. We validated the approach by comparing in silico results for 197 enteropathogenic E. coli isolates with those obtained by serological phenotyping in an independent laboratory. We then demonstrated the utility of our method to characterize isolates in public health and clinical settings, and to explore the genetic diversity of >1500 E. coli genomes from multiple sources. Importantly, we showed that transfer of O- and H-antigen loci between E. coli chromosomal backbones is common, with little evidence of constraints by host or pathotype, suggesting that E. coli 'strain space' may be virtually unlimited, even within specific pathotypes. Our findings show that serotyping is most useful when used in combination with strain genotyping to characterize microevolution events within an inferred population structure
The type II secretion system and its ubiquitous lipoprotein substrate, SsIE are required for biofilm formation and virulence of enteropathogenic escherichia coli
Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrhea in infants in developing countries. We have identified a functional type II secretion system (T2SS) in EPEC that is homologous to the pathway responsible for the secretion of heat-labile enterotoxin by enterotoxigenic E. coli. The wild-type EPEC T2SS was able to secrete a heat-labile enterotoxin reporter, but an isogenic T2SS mutant could not. We showed that the major substrate of the T2SS in EPEC is SslE, an outer membrane lipoprotein (formerly known as YghJ), and that a functional T2SS is essential for biofilm formation by EPEC. T2SS and SslE mutants were arrested at the microcolony stage of biofilm formation, suggesting that the T2SS is involved in the development of mature biofilms and that SslE is a dominant effector of biofilm development. Moreover, the T2SS was required for virulence, as infection of rabbits with a rabbit-specific EPEC strain carrying a mutation in either the T2SS or SslE resulted in significantly reduced intestinal colonization and milder disease
Atypical Enteropathogenic Escherichia coli Infection and Prolonged Diarrhea in Children
Infection of children with atypical EPEC is associated with prolonged diarrhea
Escherichia coli and Community-acquired Gastroenteritis, Melbourne, Australia
Atypical strains of enteropathogenic E. coli are a leading cause of gastroenteritis in Melbourne
Diagnostic microbiologic methods in the GEMS-1 case/control study.
To understand the etiology of moderate-to-severe diarrhea among children in high mortality areas of sub-Saharan Africa and South Asia, we performed a comprehensive case/control study of children aged <5 years at 7 sites. Each site employed an identical case/control study design and each utilized a uniform comprehensive set of microbiological assays to identify the likely bacterial, viral and protozoal etiologies. The selected assays effected a balanced consideration of cost, robustness and performance, and all assays were performed at the study sites. Identification of bacterial pathogens employed streamlined conventional bacteriologic biochemical and serological algorithms. Diarrheagenic Escherichia coli were identified by application of a multiplex polymerase chain reaction assay for enterotoxigenic, enteroaggregative, and enteropathogenic E. coli. Rotavirus, adenovirus, Entamoeba histolytica, Giardia enterica, and Cryptosporidium species were detected by commercially available enzyme immunoassays on stool samples. Samples positive for adenovirus were further evaluated for adenovirus serotypes 40 and 41. We developed a novel multiplex assay to detect norovirus (types 1 and 2), astrovirus, and sapovirus. The portfolio of diagnostic assays used in the GEMS study can be broadly applied in developing countries seeking robust cost-effective methods for enteric pathogen detection
Autogenous Transcriptional Regulation of the regA Gene, Encoding an AraC-Like, Essential Virulence Regulator in Citrobacter rodentium▿
We identified several promoters responsible for the expression of regA, which encodes a global virulence regulator in Citrobacter rodentium. Expression of some of the promoters was strongly autoactivated by RegA in conjunction with bicarbonate. Biochemical and mutational analyses were used to determine the consensus sequence of the RegA-binding sites