11 research outputs found
Detection and Characterization of Distinct Alphacoronaviruses in Five Different Bat Species in Denmark
Bat populations harbour a multitude of viruses; some of these are pathogenic or potentially pathogenic in other animals or humans. Therefore, it is important to monitor the populations and characterize these viruses. In this study, the presence of coronaviruses (CoVs) in different species of Danish bats was investigated using active surveillance at different geographical locations in Denmark. Faecal samples were screened for the presence of CoVs using pan-CoV real-time RT-PCR assays. The amplicons, obtained from five different species of bats, were sequenced. Phylogenetic analysis revealed a species-specific clustering with the samples from Myotis daubentonii, showing a close resemblance to coronavirus sequences obtained from the same species of bat in Germany and the United Kingdom. Our results show, for the first time, that multiple, distinct alphacoronaviruses are present in the Danish bat populations
In vivo MRI and ex vivo histological assessment of the cardioprotection induced by ischemic preconditioning, postconditioning and remote conditioning in a closed-chest porcine model of reperfused acute myocardial infarction: importance of microvasculature
BACKGROUND: Cardioprotective value of ischemic post- (IPostC), remote (RIC) conditioning in acute myocardial infarction (AMI) is unclear in clinical trials. To evaluate cardioprotection, most translational animal studies and clinical trials utilize necrotic tissue referred to the area at risk (AAR) by magnetic resonance imaging (MRI). However, determination of AAR by MRI' may not be accurate, since MRI-indices of microvascular damage, i.e., myocardial edema and microvascular obstruction (MVO), may be affected by cardioprotection independently from myocardial necrosis. Therefore, we assessed the effect of IPostC, RIC conditioning and ischemic preconditioning (IPreC; positive control) on myocardial necrosis, edema and MVO in a clinically relevant, closed-chest pig model of AMI. METHODS AND RESULTS: Acute myocardial infarction was induced by a 90-min balloon occlusion of the left anterior descending coronary artery (LAD) in domestic juvenile female pigs. IPostC (6 x 30 s ischemia/reperfusion after 90-min occlusion) and RIC (4 x 5 min hind limb ischemia/reperfusion during 90-min LAD occlusion) did not reduce myocardial necrosis as assessed by late gadolinium enhancement 3 days after reperfusion and by ex vivo triphenyltetrazolium chloride staining 3 h after reperfusion, however, the positive control, IPreC (3 x 5 min ischemia/reperfusion before 90-min LAD occlusion) did. IPostC and RIC attenuated myocardial edema as measured by cardiac T2-weighted MRI 3 days after reperfusion, however, AAR measured by Evans blue staining was not different among groups, which confirms that myocardial edema is not a measure of AAR, IPostC and IPreC but not RIC decreased MVO. CONCLUSION: We conclude that IPostC and RIC interventions may protect the coronary microvasculature even without reducing myocardial necrosis
Effects of Genotype and Environment on the Contents of Betaine, Choline, and Trigonelline in Cereal Grains
This study examined the environmental and genetic variation in methyl donor contents and compositions of 200 cereal genotypes. Glycine betaine, choline, and trigonelline contents were determined by H-1 NMR, and significant differences were observed between cereal types (G) and across harvesting years and growing locations (E). Glycine betaine was the most abundant methyl donor in all of the 200 lines grown on a single site, and concentrations ranged from 0.43 +/- 0.09 mg/g dm in oats to 2.57 +/- 0.25 mg/g dm in diploid Einkorn varieties. In bread wheat genotypes there was a 3-fold difference in glycine betaine content. Choline contents, in the same lines, were substantially lower, and mean concentrations ranged from 0.17 mg/g dm in oats to 0.27 mg/g dm in durum wheat. Trigonelline was by far the least abundant of the methyl donors studied. Despite this, however, there were large differences between cereal types. Twenty-six wheat genotypes were grown in additional years at four European locations. The average glycine betaine content was highest in grains grown in Hungary and lowest in those grown in the United Kingdom. Across the six environments, there was a 3.8-fold difference in glycine betaine content. Glycine betaine levels, although moderately heritable (0.36), were found to be the most susceptible to the environmental conditions. Free choline concentrations were less variable across genotypes, but heritability of this component was the lowest of all methyl donor components (0.25) and showed a high G x E interaction. Trigonelline showed the most variation due to genotype. Heritability of this metabolite was the highest (0.59), but given that it is at a very low concentration in wheat, it is probably not attractive to plant breeders
Mechanisms and consequences of diversity-generating immune strategies
This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this record.Species from all five kingdoms of life have evolved sophisticated mechanisms to generate diversity in genes that are involved in host-pathogen interactions, conferring reduced levels of parasitism to both individuals and populations. Here, we highlight unifying concepts that underpin these evolutionarily unrelated diversity-generating mechanisms (DGMs). We discuss the mechanisms of and selective forces acting on these diversity-generating immune strategies, as well as their epidemiological and co-evolutionary consequences. We propose that DGMs can be broadly classified into two classes - targeted and untargeted DGMs - which generate different levels of diversity with important consequences for host-parasite co-evolution.E.R.W. and A.B. acknowledge the Natural Environment Research Council, the Biotechnology and Biological Sciences Research Council, the Royal Society, the Leverhulme Trust, the Wellcome Trust, the European Research Council and the AXA research fund for funding