41 research outputs found

    Effects of biodegradable-based microplastics in Paracentrotus lividus Lmk embryos: Morphological and gene expression analysis

    Get PDF
    : Plastic pollution is a remarkable environmental issue. In fact, plastic is widespread in the lifetime and serious environmental problems are caused by the improper management of plastic end of life, being plastic litter detected in any environment. Efforts are put to implement the development of sustainable and circular materials. In this scenario, biodegradable polymers, BPs, are promising materials if correctly applied and managed at the end of life to minimize environmental problems. However, a lack of data on BPs fate and toxicity on marine organisms, limits their applicability. In this research, the impact of microplastics obtained from BPs, BMPs, were analyzed on Paracentrotus lividus. Microplastics were produced from five biodegradable polyesters at laboratory scale by milling the pristine polymers, under cryogenic conditions. Morphological analysis of P. lividus embryos exposed to polycaprolactone (PCL), polyhydroxy butyrate (PHB) and polylactic acid (PLA) showed their delay and malformations, which at molecular level are due to variation in expression levels of eighty-seven genes involved in various cellular processes, such as skeletogenesis, differentiation and development, stress, and detoxification response. Exposure to poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA) microplastics showed no detectable effects on P. lividus embryos. These findings contribute with important data on the effect of BPs on the physiology of marine invertebrates

    Simulated microgravity promotes the formation of tridimensional cultures and stimulates pluripotency and a glycolytic metabolism in human hepatic and biliary tree stem/progenitor cells

    Get PDF
    Many pivotal biological cell processes are affected by gravity. The aim of our study was to evaluate biological and functional effects, differentiation potential and exo-metabolome profile of simulated microgravity (SMG) on human hepatic cell line (HepG2) and human biliary tree stem/progenitor cells (hBTSCs). Both hBTSCs and HepG2 were cultured in a weightless and protected environment SGM produced by the Rotary Cell Culture System (Synthecon) and control condition in normal gravity (NG). Self-replication and differentiation toward mature cells were determined by culturing hBTSCs in Kubota's Medium (KM) and in hormonally defined medium (HDM) tailored for hepatocyte differentiation. The effects on the expression and cell exo-metabolome profiles of SMG versus NG cultures were analyzed. SMG promotes tridimensional (3D) cultures of hBTSCs and HepG2. Significative increase of stemness gene expression (p < 0.05) has been observed in hBTSCs cultured in SMG when compared to NG condition. At the same time, the expression of hepatocyte lineage markers in hBTSCs differentiated by HDM was significantly lower (p < 0.05) in SMG compared to NG, demonstrating an impaired capability of hBTSCs to differentiate in vitro toward mature hepatocytes when cultured in SMG condition. Furthermore, in HepG2 cells the SMG caused a lower (p < 0.05 vs controls) transcription of CYP3A4, a marker of late-stage (i.e. Zone 3) hepatocytes. Exo-metabolome NMR-analysis showed that both cell cultures consumed a higher amount of glucose and lower glutamate in SMG respect to NG (p < 0.05). Moreover, hBTSCs media cultures resulted richer of released fermentation (lactate, acetate) and ketogenesis products (B-hydroxybutyrate) in SGM (p < 0.05) than NG. While, HepG2 cells showed higher consumption of amino acids and release of ketoacids (3-Methyl-2-oxovalerate, 2-oxo-4-methyl-valerate) and formiate with respect to normogravity condition (p < 0.05). Based on our results, SMG could be helpful for developing hBTSCs-derived liver devices. In conclusion, SMG favored the formation of hBTSCs and HepG2 3D cultures and the maintenance of stemness contrasting cell differentiation; these effects being associated with stimulation of glycolytic metabolism. Interestingly, the impact of SMG on stem cell biology should be taken into consideration for workers involved in space medicine programs

    Consequences of simulated microgravity in neural stem cells: biological effects and metabolic response.

    Get PDF
    Objective: Microgravity was often shown to cause cell damage and impair cell cycle in a variety of biological systems. Since the effects on the neural system were poorly investigated, we aimed to gain insight into how biological processes such as cell cycle, cell damage, stemness features and metabolic status are involved in neural stem cells (NSC) when they experience simulated microgravity. We also wished to investigate whether these modulations were transient or permanent once cells were returned to normal gravity. Methods: NSC were isolated from mouse cerebella and cultured in the Rotary Cell Culture System (RCCS) to model microgravity. We analyzed cell cycle, stress and apoptotic response. We also performed a 1H NMR-based metabolomic analysis and evaluation of stemness features of NSC in simulated microgravity and once in the returned to normogravity cell culture. Results: Biological processes and metabolic status were modulated by simulated microgravity. Cells were arrested in S-phase together with enhanced apoptosis. Metabolic changes occurred in NSC after simulated microgravity. Interestingly, these modulations were transient. Indeed, stemness features and metabolic footprint returned to basal levels after few days of culture in normal conditions. Moreover NSC clonogenic ability was not impaired. Conclusions: Our data suggest that simulated microgravity impacts on NSC biological processes, including cell cycle and apoptosis. However, NSC does not suffer from permanent damage

    Stereotactic body radiotherapy vs conventionally fractionated chemoradiation in locally advanced pancreatic cancer: A multicenter case‐control study (PAULA‐1)

    Get PDF
    The aim of this study was to compare two cohorts of LAPC patients treated with SBRT ± CHT vs CRT ± CHT in terms of local control (LC), distant metastases- free survival (DMFS), progression-free survival (PFS), overall survival (OS), and toxicity. Eighty patients were included. Patients in the two cohorts were matched ac- cording to: age ≤/&gt;65 years, tumor diameter (two cut-offs

    Performance Assessment in Fingerprinting and Multi Component Quantitative NMR Analyses

    Get PDF
    An interlaboratory comparison (ILC) was organized with the aim to set up quality control indicators suitable for multicomponent quantitative analysis by nuclear magnetic resonance (NMR) spectroscopy. A total of 36 NMR data sets (corresponding to 1260 NMR spectra) were produced by 30 participants using 34 NMR spectrometers. The calibration line method was chosen for the quantification of a five-component model mixture. Results show that quantitative NMR is a robust quantification tool and that 26 out of 36 data sets resulted in statistically equivalent calibration lines for all considered NMR signals. The performance of each laboratory was assessed by means of a new performance index (named Qp-score) which is related to the difference between the experimental and the consensus values of the slope of the calibration lines. Laboratories endowed with a Qp-score falling within the suitable acceptability range are qualified to produce NMR spectra that can be considered statistically equivalent in terms of relative intensities of the signals. In addition, the specific response of nuclei to the experimental excitation/relaxation conditions was addressed by means of the parameter named NR. NR is related to the difference between the theoretical and the consensus slopes of the calibration lines and is specific for each signal produced by a well-defined set of acquisition parameters

    Metabolic analysis of the removal of formic acid by unacclimated activated sludge

    No full text
    This paper investigates the removal of formic acid by unacclimated biomass from a municipal activated sludge wastewater treatment plant. The biomass was initially able to remove formic acid, but its removal rate and Oxygen Uptake Rate (OUR) decreased with time, until formic acid removal stopped before the formic acid had been exhausted. Formaldehyde was removed in a similar way, whereas the same biomass was simultaneously able to grow and store PHAs when acetic acid was used as substrate. Batch tests with glycine and (13)C NMR analysis were performed, showing that unacclimated biomass was not able to synthesize all the metabolic intermediates from formic acid alone. At least glycine needed to be externally supplemented, in order to activate the serine synthesis pathway. A small amount of formic acid removal in the absence of growth was also possible through formaldehyde formation and its further conversion to formalin (1,2-formaldehyde dimer), whereas no PHAs were formed. (C) 2010 Elsevier Ltd. All rights reserved
    corecore