429 research outputs found

    Co-targeting of Bcl-2 and mTOR pathway triggers synergistic apoptosis in BH3 mimetics resistant acute lymphoblastic leukemia

    Get PDF
    Several chemo-resistance mechanisms including the Bcl-2 protein family overexpression and constitutive activation of the PI3K/Akt/mTOR signaling have been documented in acute lymphoblastic leukemia (ALL), encouraging targeted approaches to circumvent this clinical problem. Here we analyzed the activity of the BH3 mimetic ABT-737 in ALL, exploring the synergistic effects with the mTOR inhibitor CCI-779 on ABT-737 resistant cells. We showed that a low Mcl-1/Bcl-2 plus Bcl-xL protein ratio determined ABT-737 responsiveness. ABT-737 exposure further decreased Mcl-1, inducing apoptosis on sensitive models and primary samples, while not affecting resistant cells. Co-inhibition of Bcl-2 and the mTOR pathway resulted cytotoxic on ABT-737 resistant models, by downregulating mTORC1 activity and Mcl-1 in a proteasome-independent manner. Although Mcl-1 seemed to be critical, ectopic modulation did not correlate with apoptosis changes. Importantly, dual targeting proved effective on ABT-737 resistant samples, showing additive/synergistic effects. Together, our results show the efficacy of BH3 mimetics as single agent in the majority of the ALL samples and demonstrate that resistance to ABT-737 mostly correlated with Mcl-1 overexpression. Co-targeting of the Bcl-2 protein family and mTOR pathway enhanced drug-induced cytotoxicity by suppressing Mcl-1, providing a novel therapeutic approach to overcome BH3 mimetics resistance in ALL

    Genetic modulation of PINK1 differentially affects mitophagy compared with autophagy disclosing common mechanisms of genetic and environmental parkinsonism

    Get PDF
    The second most frequent cause of autosomal recessive Parkinson’s disease is represented by mutations in the PTEN-induced putative kinase1 (PINK1). The PINK1 protein mainly localizes to mitochondria which are considered the target organelles mainly affected in Parkinson’s disease. In fact, parkinsonism-inducing neurotoxins such as rotenone, MPTP and methamphetamine all damage mitochondria. Therefore, the ability to counteract mitochondrial toxicity and promoting mitochondrial renewal by mithophagy and mitochondrial biogenesis is critical to cure Parkinsonism. For instance the autophagy-dependent removal of altered mitochondria known as mitophagy is supposed to be key in conteracting mitochondrial toxicity. Interestingly mitochondrial PINK1 is known to interact with autophagy proteins such as beclin1 and the ubiquitin-ligase parkin. Therefore, in the present study we evaluated whether such an interaction produced downstream effects leading to autophagy activation. This was evaluated through the simultaneous analysis of co-localization of parkin and beclin1 with the autophagy initiator ubiquitin. These phenomena were analyzed both at mitochondrial level and throughout the cytosol by analyzing autophagy-like vacuoles and LC3-II positive structures. Interestingly, despite increased mitophagy PINK1 overexpression did not produce a general activation of the autophagy pathway. It is likely that such a selective fashion of autophagy activation only limited to mitochondrial removal could explain the relevance of PINK1 for Parkinson’s disease but not for other neurodegenerative, autophagy-related disorders. The present data were obtained through several experimental settings featuring PINK1 overexpression, mutation, deletion and silencing of the gene. The effects were analyzed in baseline conditions but were supplemented by experiments in the presence of methamphetamine used here both as a mitochondrial neurotoxin and an autophagy-dependent Parkinsonism inducing compound. Data revealed that PINK1 was critical for mitochondria and cell viability already in baseline conditions though such an effect was magnified upon methamphetamine exposure. The present findings while explaining the molecular interactions which are likely to induce PINK1-dependent genetic Parkinsonism, provide a further evidence on the critical role of genetic and environmental alterations in the genesis of Parkinson’s disease

    Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages

    Get PDF
    This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments

    The Large-Scale Polarization Explorer (LSPE)

    Full text link
    The LSPE is a balloon-borne mission aimed at measuring the polarization of the Cosmic Microwave Background (CMB) at large angular scales, and in particular to constrain the curl component of CMB polarization (B-modes) produced by tensor perturbations generated during cosmic inflation, in the very early universe. Its primary target is to improve the limit on the ratio of tensor to scalar perturbations amplitudes down to r = 0.03, at 99.7% confidence. A second target is to produce wide maps of foreground polarization generated in our Galaxy by synchrotron emission and interstellar dust emission. These will be important to map Galactic magnetic fields and to study the properties of ionized gas and of diffuse interstellar dust in our Galaxy. The mission is optimized for large angular scales, with coarse angular resolution (around 1.5 degrees FWHM), and wide sky coverage (25% of the sky). The payload will fly in a circumpolar long duration balloon mission during the polar night. Using the Earth as a giant solar shield, the instrument will spin in azimuth, observing a large fraction of the northern sky. The payload will host two instruments. An array of coherent polarimeters using cryogenic HEMT amplifiers will survey the sky at 43 and 90 GHz. An array of bolometric polarimeters, using large throughput multi-mode bolometers and rotating Half Wave Plates (HWP), will survey the same sky region in three bands at 95, 145 and 245 GHz. The wide frequency coverage will allow optimal control of the polarized foregrounds, with comparable angular resolution at all frequencies.Comment: In press. Copyright 2012 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibite

    The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms

    Get PDF
    : The mitogen-activated protein kinase (MAPK) and PI3K pathways are regulated by extensive crosstalk, occurring at different levels. In tumors, transactivation of the alternate pathway is a frequent "escape" mechanism, suggesting that combined inhibition of both pathways may achieve synergistic antitumor activity. Here we show that, in the M14 melanoma model, simultaneous inhibition of both MEK and mammalian target of rapamycin (mTOR) achieves synergistic effects at suboptimal concentrations, but becomes frankly antagonistic in the presence of relatively high concentrations of MEK inhibitors. This observation led to the identification of a novel crosstalk mechanism, by which either pharmacologic or genetic inhibition of constitutive MEK signaling restores phosphatase and tensin homolog (PTEN) expression, both in vitro and in vivo, and inhibits downstream signaling through AKT and mTOR, thus bypassing the need for double pathway blockade. This appears to be a general regulatory mechanism and is mediated by multiple mechanisms, such as MAPK-dependent c-Jun and miR-25 regulation. Finally, PTEN upregulation appears to be a major effector of MEK inhibitors' antitumor activity, as cancer cells in which PTEN is inactivated are consistently more resistant to the growth inhibitory and anti-angiogenic effects of MEK blockade

    Alliance Against Cancer, the network of Italian cancer centers bridging research and care

    Get PDF
    Alliance Against Cancer (ACC) was established in Rome in 2002 as a consortium of six Italian comprehensive cancer centers (Founders). The aims of ACC were to promote a network among Italian oncologic institutions in order to develop speci c, advanced projects in clinical and translational research. During the following years, many additional full and associate members joined ACC, that presently includes the National Institute of Health, 17 research-oriented hospitals, scienti c and patient organizations. Furthermore, in the last three years ACC underwent a reorganiza- tion process that redesigned the structure, governance and major activities. The present goal of ACC is to achieve high standards of care across Italy, to implement and harmonize principles of modern personalized and precision medicine, by developing cost e ective processes and to provide tailored information to cancer patients. We herein summarize some of the major initiatives that ACC is currently developing to reach its goal, including tumor genetic screening programs, establishment of clinical trial programs for cancer patients treated in Italian cancer centers, facili- tate their access to innovative drugs under development, improve quality through an European accreditation process (European Organization of Cancer Institutes), and develop international partnerships. In conclusion, ACC is a growing organization, trying to respond to the need of networking in Italy and may contribute signi cantly to improve the way we face cancer in Europe

    Quantum numbers of the X(3872)X(3872) state and orbital angular momentum in its ρ0Jψ\rho^0 J\psi decay

    Get PDF
    Angular correlations in B+→X(3872)K+B^+\to X(3872) K^+ decays, with X(3872)→ρ0J/ψX(3872)\to \rho^0 J/\psi, ρ0→π+π−\rho^0\to\pi^+\pi^- and J/ψ→Ό+Ό−J/\psi \to\mu^+\mu^-, are used to measure orbital angular momentum contributions and to determine the JPCJ^{PC} value of the X(3872)X(3872) meson. The data correspond to an integrated luminosity of 3.0 fb−1^{-1} of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be JPC=1++J^{PC}=1^{++}. The X(3872)X(3872) is found to decay predominantly through S wave and an upper limit of 4%4\% at 95%95\% C.L. is set on the fraction of D wave.Comment: 16 pages, 4 figure

    Musculoskeletal injuries among operating room nurses: results from a multicenter survey in Rome, Italy

    Full text link
    Aim: Chronic disorders of the musculoskeletal system, particularly low back pain (LBP), are increasing and represent a social and economic problem of growing importance, especially if correlated with working conditions. Health care workers are at higher risk of developing LBP during work shifts in the hospital. The aim of this study was to assess the prevalence of LBP among operating room nurses and to investigate the risk factors for musculoskeletal injuries in the operating room. Methods: We carried out a cross-sectional study that included operating room nurses from nine hospitals. Information on sociodemographic characteristics, lifestyle habits, working activity and psychological attitude of nurses was collected using an anonymous self-administered structured questionnaire. We evaluated the association of frequency, localization and intensity of LBP (FLI) with qualitative variables, making use of univariate analysis, chi-square test and Fisher's exact test. Multiple logistic regression analysis was performed to identify the variables that affected the FLI. The covariates included in the model were the variables that had a p 35 years vs. age <35 (OR = 2.68; 95% CI = 1.17–6.18) and diurnal work shift vs. diurnal/ nocturnal (OR = 4.00; 95% CI = 1.72–9.0) represent risk factors associated with FLI, while physical activity is a protective factor (OR = 0.47; 95% CI = 0.20–1.08). Conclusion: The data suggest that it is important to promote new programs of prevention based on professional training and physical activity among nurses and to improve the organization of work shifts in the hospital

    Association of the DNMT3B -579G>T polymorphism with risk of thymomas in patients with myasthenia gravis

    Get PDF
    Increasing evidence suggests a contribution of epigenetic processes in promoting cancer and autoimmunity. Myasthenia gravis (MG) is an autoimmune disease mediated, in approximately 80% of the patients, by antibodies against the nicotinic acetylcholine receptor (AChR+). Moreover, epithelial tumours (thymomas) are present in about 10-20% of the patients, and there is indication that changes in DNA methylation might contribute to the risk and progression of thymomas. However, the role of epigenetics in MG is still not completely clarified. In the present study we investigated if a common polymorphism (-579G&gt;T: rs1569686) in the promoter of the DNMT3B gene coding for the DNA methyltransferase 3B, an enzyme that mediates DNA methylation, increases the risk to develop MG or MG-associated thymomas. The study polymorphism was selected based on recent reports and a literature meta-analysis suggesting association with increased risk of various types of cancer. We screened 324 AChR+ MG patients (140 males and 184 females, mean age 56.0 \ub1 16.5 years) and 735 healthy matched controls (294 males and 441 females, mean age 57.3 \ub1 15.6 years). 94 of the total MG patients had a thymoma. While there was no association with the whole cohort of MG patients, we found a statistically significant association of the DNMT3B-579T allele (OR = 1.51; 95% CI=1.1-2.1, P = 0.01) and the TT homozygous genotype (OR = 2.59; 95% CI=1.4-4.9, P = 0.006) with the risk of thymoma. No association was observed in MG patients without thymoma, even after stratification into clinical subtypes. Present results suggest that the DNMT3B-579T allele might contribute to the risk of developing thymoma in MG patients, particularly in homozygous TT subjects

    Genetic loci linked to Type 1 Diabetes and Multiple Sclerosis families in Sardinia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Mediterranean island of Sardinia has a strikingly high incidence of the autoimmune disorders Type 1 Diabetes (T1D) and Multiple Sclerosis (MS). Furthermore, the two diseases tend to be co-inherited in the same individuals and in the same families. These observations suggest that some unknown autoimmunity variant with relevant effect size could be fairly common in this founder population and could be detected using linkage analysis.</p> <p>Methods</p> <p>To search for T1D and MS loci as well as any that predispose to both diseases, we performed a whole genome linkage scan, sequentially genotyping 593 microsatellite marker loci in 954 individuals distributed in 175 Sardinian families. In total, 413 patients were studied; 285 with T1D, 116 with MS and 12 with both disorders. Model-free linkage analysis was performed on the genotyped samples using the Kong and Cox logarithm of odds (LOD) score statistic.</p> <p>Results</p> <p>In T1D, aside from the HLA locus, we found four regions showing a lod-score ≄1; 1p31.1, 6q26, 10q21.2 and 22q11.22. In MS we found three regions showing a lod-score ≄1; 1q42.2, 18p11.21 and 20p12.3. In the combined T1D-MS scan for shared autoimmunity loci, four regions showed a LOD >1, including 6q26, 10q21.2, 20p12.3 and 22q11.22. When we typed more markers in these intervals we obtained suggestive evidence of linkage in the T1D scan at 10q21.2 (LOD = 2.1), in the MS scan at 1q42.2 (LOD = 2.5) and at 18p11.22 (LOD = 2.6). When all T1D and MS families were analysed jointly we obtained suggestive evidence in two regions: at 10q21.1 (LOD score = 2.3) and at 20p12.3 (LOD score = 2.5).</p> <p>Conclusion</p> <p>This suggestive evidence of linkage with T1D, MS and both diseases indicates critical chromosome intervals to be followed up in downstream association studies.</p
    • 

    corecore