3,122 research outputs found

    Is the squeezing of relic gravitational waves produced by inflation detectable?

    Get PDF
    Grishchuk has shown that the stochastic background of gravitational waves produced by an inflationary phase in the early Universe has an unusual property: it is not a stationary Gaussian random process. Due to squeezing, the phases of the different waves are correlated in a deterministic way, arising from the process of parametric amplification that created them. The resulting random process is Gaussian but non-stationary. This provides a unique signature that could in principle distinguish a background created by inflation from stationary stochastic backgrounds created by other types of processes. We address the question: could this signature be observed with a gravitational wave detector? Sadly, the answer appears to be "no": an experiment which could distinguish the non-stationary behavior would have to last approximately the age of the Universe at the time of measurement. This rules out direct detection by ground and space based gravitational wave detectors, but not indirect detections via the electromagnetic Cosmic Microwave Background Radiation (CMBR).Comment: 17 pages, 4 Postscript figures, uses revtex, psfig, to be submitted to PRD, minor revisions - appendix B clarified, corrected typos, added reference

    A new pathway for Mannitol metabolism in yeasts suggests a link to the evolution of alcoholic fermentation

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.The yeasts belonging to the Wickerhamiella and Starmerella genera (W/S clade) share a distinctive evolutionary history marked by loss and subsequent reinstatement of alcoholic fermentation mediated by horizontal gene transfer events. Species in this clade also share unusual features of metabolism, namely the preference for fructose over glucose as carbon source, a rare trait known as fructophily. Here we show that fructose may be the preferred sugar in W/S-clade species because, unlike glucose, it can be converted directly to mannitol in a reaction with impact on redox balance. According to our results, mannitol is excreted to the growth medium in appreciable amounts along with other fermentation products such as glycerol and ethanol but unlike the latter metabolites mannitol production increases with temperature. We used comparative genomics to find genes involved in mannitol metabolism and established the mannitol biosynthesis pathway in W/S-clade species Starmerella bombicola using molecular genetics tools. Surprisingly, mannitol production seems to be so important that St. bombicola (and other W/S-clade species) deploys a novel pathway to mediate the conversion of glucose to fructose, thereby allowing cells to produce mannitol even when glucose is the sole carbon source. Using targeted mutations and 13C-labeled glucose followed by NMR analysis of end-products, we showed that the novel mannitol biosynthesis pathway involves fructose-6-phosphate as an intermediate, implying a key role for a yet unknown fructose-6-P phosphatase. We hypothesize that mannitol production contributed to mitigate the negative effects on redox balance of the ancient loss of alcoholic fermentation in the W/S clade. Presently, mannitol also seems to play a role in stress protection.info:eu-repo/semantics/publishedVersio

    Land-use history augments environment-plant community relationship strength in a Puerto Rican wet forest

    Get PDF
    1. Environmental heterogeneity influences the species composition of tropical forests, with implications for patterns of diversity and species coexistence in these hyperdiverse communities. Many studies have examined how variability in soil nutrients and topography influence plant community composition, with differing results. None have quantified the relative contribution of environmental heterogeneity versus endogenous processes to variability in forest community composition over time and with respect to successional recovery. 2. Using five consecutive trees censuses of a forest plot in Puerto Rico, conducted between 1990 and 2011, we evaluated the influence of edaphic and topographic variability on community composition. The plot has a well-documented land-use history and is subject to periodic hurricane disturbance. Using multiple canonical distance-based redundancy analyses, we studied how spatial heterogeneity in soil nutrients and topography structure community composition over time, as the forest recovers from long-term land-use effects and two major hurricanes in 1989 and 1998. 3. For the entire plot, spatial variables (principle coordinates of neighbourhood matrices), representing the autocorrelation of tree species in the community, explained the majority (49–57%) of the variability in tree community composition. The explanatory power of spatial variables decreased over time, as forest structure recovered from hurricane damage and the stems in the understorey died. Soil nutrients and topography, collectively, explained a moderate portion (33–37%) of the species compositional variation and were slightly more robust in explaining compositional differences in areas of more intense past land use. 4. Areas of less-intense past land use showed weaker community–environmental trends overall, illustrating a tendency for stronger resource competition (i.e. light, water and soil nutrients) between species in these areas. This illustrates how environmental–plant community interactions are strengthened by the lasting effects of human land-use legacies, which persist for decades to centuries. 5. Synthesis. Our findings confirm past land use to be a fundamental driver of the structure and composition of secondary forests through its impacts on the tree community, the abiotic terrestrial environment and their interaction. Since the extent of second-growth tropical forests continues to increase, our findings highlight the importance of understanding the processes that determine the rate and nature of their succession

    Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery

    Get PDF
    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks

    Identification and Selection of Cases and Controls in the Pneumonia Etiology Research for Child Health Project

    Get PDF
    Methods for the identification and selection of patients (cases) with severe or very severe pneumonia and controls for the Pneumonia Etiology Research for Child Health (PERCH) project were needed. Issues considered include eligibility criteria and sampling strategies, whether to enroll hospital or community controls, whether to exclude controls with upper respiratory tract infection (URTI) or nonsevere pneumonia, and matching criteria, among others. PERCH ultimately decided to enroll community controls and an additional human immunodeficiency virus (HIV)–infected control group at high HIV-prevalence sites matched on age and enrollment date of cases; controls with symptoms of URTI or nonsevere pneumonia will not be excluded. Systematic sampling of cases (when necessary) and random sampling of controls will be implemented. For each issue, we present the options that were considered, the advantages and disadvantages of each, the rationale for the methods selected for PERCH, and remaining implications and limitations

    Estimation of changes in the force of infection for intestinal and urogenital schistosomiasis in countries with Schistosomiasis Control Initiative-assisted programmes

    Get PDF
    The last decade has seen an expansion of national schistosomiasis control programmes in Africa based on large-scale preventative chemotherapy. In many areas this has resulted in considerable reductions in infection and morbidity levels in treated individuals. In this paper, we quantify changes in the force of infection (FOI), defined here as the per (human) host parasite establishment rate, to ascertain the impact on transmission of some of these programmes under the umbrella of the Schistosomiasis Control Initiative (SCI)
    corecore