18,389 research outputs found
The cooling, mass and radius of the neutron star in EXO 0748-676 in quiescence with XMM-Newton
We analyse four XMM-Newton observations of the neutron-star low-mass X-ray
binary EXO 0748676 in quiescence. We fit the spectra with an absorbed
neutron-star atmosphere model, without the need for a high-energy (power-law)
component; with a 95 per cent confidence the power-law contributes less than 1
per cent to the total flux of the source in keV. The fits show
significant residuals at around 0.5 keV which can be explained by either a hot
gas component around the neutron star or a moderately broad emission line from
a residual accretion disc. The temperature of the neutron-star has decreased
significantly compared to the previous observation, from 124 eV to 105 eV, with
the cooling curve being consistent with either an exponential decay plus a
constant or a (broken) power law. The best-fitting neutron-star mass and radius
can be better constrained if we extend the fits down to the lowest possible
energy available. For an assumed distance of 7.1 kpc, the best-fitting
neutron-star mass and radius are and
km if we fit the spectrum over the keV range, but
and km if we restrict the
fits to the keV range. We finally discuss the effect of the assumed
distance to the source upon the best-fitting neutron-star mass and radius. As
systematic uncertainties in the deduced mass and radius depending on the
distance are much larger than the statistical errors, it would be disingenuous
to take these results at face value.Comment: 12 pages, 6 figure
Comparative in silico analysis of SSRs in coding regions of high confidence predicted genes in Norway spruce (Picea abies) and Loblolly pine (Pinus taeda)
Background: Microsatellites or simple sequence repeats (SSRs) are DNA sequences consisting of 1-6 bp tandem repeat motifs present in the genome. SSRs are considered to be one of the most powerful tools in genetic studies. We carried out a comparative study of perfect SSR loci belonging to class I (>= 20) and class II (>= 12 and < 20 bp) types located in coding regions of high confidence genes in Picea abies and Pinus taeda. SSRLocator was used to retrieve SSRs from the full length CDS of predicted genes in both species.
Results: Trimers were the most abundant motifs in class I followed by hexamers in Picea abies, while trimers and hexamers were equally abundant in Pinus taeda class I SSRs. Hexamers were most frequent within class II SSRs followed by trimers, in both species. Although the frequency of genes containing SSRs was slightly higher in Pinus taeda, SSR counts per Mbp for class I was similar in both species (P-value = 0.22); while for class II SSRs, it was significantly higher in Picea abies (P-value = 0.00009). AT-rich motifs were higher in abundance than the GC-rich motifs, within class II SSRs in both the species (P-values = 10(-9) and 0). With reference to class I SSRs, AT-rich and GC-rich motifs were detected with equal frequency in Pinus taeda (P-value = 0.24); while in Picea abies, GC-rich motifs were detected with higher frequency than the AT-rich motifs (P-value = 0.0005).
Conclusions: Our study gives a comparative overview of the genome SSRs composition based on high confidence genes in the two recently sequenced and economically important conifers and, also provides information on functional molecular markers that can be applied in genetic studies in Pinus and Picea species
Integrin α2β1 in nonactivated conformation can induce focal adhesion kinase signaling.
Conformational activation of integrins is generally required for ligand binding and cellular signalling. However, we have previously reported that the nonactivated conformation of α2β1 integrin can also bind to large ligands, such as human echovirus 1. In this study, we show that the interaction between the nonactivated integrin and a ligand resulted in the activation of focal adhesion kinase (FAK) in a protein kinase C dependent manner. A loss-of-function mutation, α2E336A, in the α2-integrin did not prevent the activation of FAK, nor did EDTA-mediated inactivation of the integrin. Full FAK activation was observed, since phosphorylation was not only confirmed in residue Y397, but also in residues Y576/7. Furthermore, initiation of downstream signaling by paxillin phosphorylation in residue Y118 was evident, even though this activation was transient by nature, probably due to the lack of talin involvement in FAK activation and the absence of vinculin in the adhesion complexes formed by the nonactivated integrins. Altogether these results indicate that the nonactivated integrins can induce cellular signaling, but the outcome of the signaling differs from conventional integrin signaling
The Nature of Heat Release in Gasoline PPCI Engines
The heat release characteristics in terms of the maximum pressure rise rate (MPRR) and combustion phasing in a partially premixed compression ignition (PPCI) engine are studied using a calibration gasoline. Early port fuel injection provides a nearly homogeneous charge, into which a secondary fuel pulse is added via direct injection (DI) to provide stratification which is affected by the timing of the start of injection (SOI). As the SOI the DI fuel is retarded from early compression, MPRR first decreases, then increases substantially, and decreases again. The MPRR correlates mostly with the combustion phasing. The SOI timing plays an indirect role. The observation is explained by a bulk heat release process of which the rate increases with temperature rather than by a sequential ignition process. Observations from compression ignition of representative homogeneous charges in a Rapid Compression Machine support this explanation
Real-time observation of a coherent lattice transformation into a high-symmetry phase
Excursions far from their equilibrium structures can bring crystalline solids
through collective transformations including transitions into new phases that
may be transient or long-lived. Direct spectroscopic observation of
far-from-equilibrium rearrangements provides fundamental mechanistic insight
into chemical and structural transformations, and a potential route to
practical applications, including ultrafast optical control over material
structure and properties. However, in many cases photoinduced transitions are
irreversible or only slowly reversible, or the light fluence required exceeds
material damage thresholds. This precludes conventional ultrafast spectroscopy
in which optical excitation and probe pulses irradiate the sample many times,
each measurement providing information about the sample response at just one
probe delay time following excitation, with each measurement at a high
repetition rate and with the sample fully recovering its initial state in
between measurements. Using a single-shot, real-time measurement method, we
were able to observe the photoinduced phase transition from the semimetallic,
low-symmetry phase of crystalline bismuth into a high-symmetry phase whose
existence at high electronic excitation densities was predicted based on
earlier measurements at moderate excitation densities below the damage
threshold. Our observations indicate that coherent lattice vibrational motion
launched upon photoexcitation with an incident fluence above 10 mJ/cm2 in bulk
bismuth brings the lattice structure directly into the high-symmetry
configuration for tens of picoseconds, after which carrier relaxation and
diffusion restore the equilibrium lattice configuration.Comment: 22 pages, 4 figure
van der Waals epitaxy of monolayer hexagonal boron nitride on copper foil : growth, crystallography and electronic band structure
We investigate the growth of hexagonal boron nitride (h-BN) on copper foil by low pressure chemical vapour deposition (LP-CVD). At low pressure, h-BN growth proceeds through the nucleation and growth of triangular islands. Comparison between the orientation of the islands and the local crystallographic orientation of the polycrystalline copper foil reveals an epitaxial relation between the copper and h-BN, even on Cu(100) and Cu(110) regions whose symmetry is not matched to the h-BN. However, the growth rate is faster and the islands more uniformly oriented on Cu(111) grains. Angle resolved photoemission spectroscopy measurements reveal a well-defined band structure for the h-BN, consistent with a band gap of 6 eV, that is decoupled from the copper surface beneath. These results indicate that, despite a weak interaction between h-BN and copper, van der Waals epitaxy defines the long range ordering of h-BN even on polycrystalline copper foils and suggest that large area, single crystal, monolayer h-BN could be readily and cheaply produced
Nonlinear and Scaling Processes in Hydrology and Soil Science
Hydrology is the study of the properties, distribution and effects of water on the Earth?s soil, rocks and atmosphere. It also encompasses the study of the hydrologic cycle of precipitation, runoff, infiltration, storage, and evaporation, including the physical, biological and chemical reaction of water with the earth and its relation to life?
Genetic study of congenital bile-duct dilatation identifies de novo and inherited variants in functionally related genes
Background:
Congenital dilatation of the bile-duct (CDD) is a rare, mostly sporadic, disorder that results in bile retention with severe associated complications. CDD affects mainly Asians. To our knowledge, no genetic study has ever been conducted.
Methods:
We aim to identify genetic risk factors by a “trio-based” exome-sequencing approach, whereby 31 CDD probands and their unaffected parents were exome-sequenced. Seven-hundred controls from the local population were used to detect gene-sets significantly enriched with rare variants in CDD patients.
Results:
Twenty-one predicted damaging de novo variants (DNVs; 4 protein truncating and 17 missense) were identified in several evolutionarily constrained genes (p < 0.01). Six genes carrying DNVs were associated with human developmental disorders involving epithelial, connective or bone morphologies (PXDN, RTEL1, ANKRD11, MAP2K1, CYLD, ACAN) and four linked with cholangio- and hepatocellular carcinomas (PIK3CA, TLN1 CYLD, MAP2K1). Importantly, CDD patients have an excess of DNVs in cancer-related genes (p < 0.025). Thirteen genes were recurrently mutated at different sites, forming compound heterozygotes or functionally related complexes within patients.
Conclusions:
Our data supports a strong genetic basis for CDD and show that CDD is not only genetically heterogeneous but also non-monogenic, requiring mutations in more than one genes for the disease to develop. The data is consistent with the rarity and sporadic presentation of CDD
Aberration in qualitative multilevel designs
Generalized Word Length Pattern (GWLP) is an important and widely-used tool
for comparing fractional factorial designs. We consider qualitative factors,
and we code their levels using the roots of the unity. We write the GWLP of a
fraction using the polynomial indicator function, whose
coefficients encode many properties of the fraction. We show that the
coefficient of a simple or interaction term can be written using the counts of
its levels. This apparently simple remark leads to major consequence, including
a convolution formula for the counts. We also show that the mean aberration of
a term over the permutation of its levels provides a connection with the
variance of the level counts. Moreover, using mean aberrations for symmetric
designs with prime, we derive a new formula for computing the GWLP of
. It is computationally easy, does not use complex numbers and
also provides a clear way to interpret the GWLP. As case studies, we consider
non-isomorphic orthogonal arrays that have the same GWLP. The different
distributions of the mean aberrations suggest that they could be used as a
further tool to discriminate between fractions.Comment: 16 pages, 1 figur
Chaotic imaging in frequency downconversion
We analyze and realize the recovery, by means of spatial intensity
correlations, of the image obtained by a seeded frequency downconversion
process in which the seed field is chaotic and an intensity modulation is
encoded on the pump field. Although the generated field is as chaotic as the
seed field and does not carry any information about the modulation of the pump,
an image of the pump can be extracted by measuring the spatial intensity
correlations between the generated field and one Fourier component of the seed
- …
