7 research outputs found

    TACE is required for the activation of the EGFR by TGF-α in tumors

    No full text
    The factors and mechanisms that transduce the intracellular signals sent upon activation of the receptor for the epidermal growth factor (EGFR) and related receptors are reasonably well understood and, in fact, are the targets of anti-tumor drugs. In contrast, less is known about the mechanisms implicated in sending the signals that activate these receptors. Here we show that when its proteolytic shedding is prevented, the transmembrane form of the transforming growth factor-α (proTGF-α) interacts with, but does not activate, the EGFR. Thus, shedding seems to control not only the availability of the soluble form of the growth factor (TGF-α) but also the activity of the transmembrane form. The activity of the protease responsible for the shedding of proTGF-α, tumor necrosis factor-α converting enzyme (TACE), is required for the activation of the EGFR in vivo and for the development of tumors in nude mice, indicating a crucial role of TACE in tumorigenesis. In agreement with this view, TACE is dramatically overexpressed in the majority of mammary tumors analyzed. Collectively, this evidence points to TACE as a promising target of anti-tumor therapy

    Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase

    Get PDF
    There is no treatment for the neurodegenerative disorder Huntington disease (HD). Cystamine is a candidate drug; however, the mechanisms by which it operates remain unclear. We show here that cystamine increases levels of the heat shock DnaJ-containing protein 1b (HSJ1b) that are low in HD patients. HSJ1b inhibits polyQ-huntingtin–induced death of striatal neurons and neuronal dysfunction in Caenorhabditis elegans. This neuroprotective effect involves stimulation of the secretory pathway through formation of clathrin-coated vesicles containing brain-derived neurotrophic factor (BDNF). Cystamine increases BDNF secretion from the Golgi region that is blocked by reducing HSJ1b levels or by overexpressing transglutaminase. We demonstrate that cysteamine, the FDA-approved reduced form of cystamine, is neuroprotective in HD mice by increasing BDNF levels in brain. Finally, cysteamine increases serum levels of BDNF in mouse and primate models of HD. Therefore, cysteamine is a potential treatment for HD, and serum BDNF levels can be used as a biomarker for drug efficacy

    Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons

    No full text
    The transport of vesicles in neurons is a highly regulated process, with vesicles moving either anterogradely or retrogradely depending on the nature of the molecular motors, kinesins and dynein, respectively, which propel vesicles along microtubules (MTs). However, the mechanisms that determine the directionality of transport remain unclear. Huntingtin, the protein mutated in Huntington's disease, is a positive regulatory factor for vesicular transport. Huntingtin is phosphorylated at serine 421 by the kinase Akt but the role of this modification is unknown. Here, we demonstrate that phosphorylation of wild-type huntingtin at S421 is crucial to control the direction of vesicles in neurons. When phosphorylated, huntingtin recruits kinesin-1 to the dynactin complex on vesicles and MTs. Using brain-derived neurotrophic factor as a marker of vesicular transport, we demonstrate that huntingtin phosphorylation promotes anterograde transport. Conversely, when huntingtin is not phosphorylated, kinesin-1 detaches and vesicles are more likely to undergo retrograde transport. This also applies to other vesicles suggesting an essential role for huntingtin in the control of vesicular directionality in neurons
    corecore